Friday, May 13, 2016

Single Variable Calculus, Chapter 2, 2.3, Section 2.3, Problem 48

Given the function
$
g(x) = \left\{
\begin{array} {c}
x & \text{ if } x < 1\\
3 & \text{ if } x = 1\\
2 - x^2 & \text{ if } 1 < x \leq 2\\
x -3 & \text{ if } x > 2
\end{array}
\right.
$

a.) Find each of the following limits if it exists

$
\begin{equation}
\begin{aligned}
(i) & \lim\limits_{x \to 1^-} g(x) &
(ii) & \lim\limits_{x \to 1} g(x) &
(iii) & g(1)\\

(iv) & \lim\limits_{x \to 2^-} g(x) &
(v) & \lim\limits_{x \to 2^+} g(x) &
(vi) & \lim\limits_{x \to 2} g(x)
\end{aligned}
\end{equation}
$


b.) Sketch the graph of $g$


Answers:
a.)


$
\begin{equation}
\begin{aligned}
& (i) \lim\limits_{x \to 1^-} g(x) && = \lim\limits_{x \to 1^-} x \quad = 1\\
& (ii) \lim\limits_{x \to 1} g(x) && \text{We evaluate first the right limit of the function to see whether the } \lim\limits_{x \to 1} g(x) \text{ exist}\\
& \phantom{x} && \lim\limits_{x \to 1^+} g(x) \quad = \lim\limits_{x \to 1^+} (2-x^2) \quad = 2-(1)^2 \quad = 1\\
& \phantom{x} && \text{The left and right hand limits are equal. Therefore, } \lim\limits_{x \to 1} g(x) \text{ exist and is equal to 1}\\
& \phantom{x} && \lim\limits_{x \to 1} g(x) = 1\\
& (iii) g(1) & & g(1) = 3\\
& (iv) \lim\limits_{x \to 2^-} g(x)&& = \lim\limits_{x \to 2} (2-x^2) \quad= 2 - (2)^2 \quad= -2\\
& (v) \lim\limits_{x \to 2^+} g(x) && = \lim\limits_{x \to 2} (x-3)\quad = 2 - 3 \quad = -1\\
& (vi) \lim\limits_{x \to 2} g(x) && \text{Does not exist because the left and right hand limits are different}
\end{aligned}
\end{equation}
$


b.) Sketch the graph of $g$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...