Sunday, May 15, 2016

Single Variable Calculus, Chapter 3, 3.6, Section 3.6, Problem 51

Determine all points on the curve $x^2y^2 + xy = 2$ where the slope of the tangent line is $-1$.

Taking the derivative of the equation implicitly we have,

$\displaystyle \frac{d}{dx} (x^2 y^2) + \frac{d}{dx} (xy) = \frac{d}{dx} (2)$


$
\begin{equation}
\begin{aligned}

& \frac{d}{dx} (x^2) \cdot y^2 + x^2 \cdot \frac{d}{dy} (y^2) \frac{dy}{dx} + \frac{d}{dx} (x) \cdot y + x \cdot \frac{d}{dy} (y) \frac{dy}{dx} = 0
\\
\\
& 2xy^2 + 2x^2 y \frac{dy}{dx} + y + x \frac{dy}{dx} = 0
\\
\\
& \frac{dy}{dx} = \frac{-2xy^2 - y}{2x^2 y + x}


\end{aligned}
\end{equation}
$


But we are looking for the target lines that has slope $-1$, so

$\displaystyle \frac{dy}{dx} = -1$



$
\begin{equation}
\begin{aligned}

& -1 = \frac{-2xy - y}{2x^2 y + x} \longrightarrow \cancel{-}1 = \cancel{-} \left( \frac{2xy^2 + y}{2x^2 y + x} \right)
\\
\\
& 2x^2y + x = 2xy^2 + y
\\
\\
& (y-x)(2xy + 1) = 0

\end{aligned}
\end{equation}
$




So,

$y = x$ and $2xy = -1$ or $\displaystyle xy = \frac{-1}{2}$

Substituting $\displaystyle xy = \frac{-1}{2}$ in the equation of the curve.


$
\begin{equation}
\begin{aligned}

& x^2y^2 + xy = 2
\\
\\
& \left( \frac{-1}{2} \right) ^2 + \left( \frac{-1}{2} \right) = 2
\\
\\
& \frac{1}{4} - \frac{1}{2} = 2

\end{aligned}
\end{equation}
$


So there are no symbols. Next, we substitute $y = x$ into the equation of the curve we have..


$
\begin{equation}
\begin{aligned}

x^2y^2 + xy =& 2
\\
\\
x^2(x^2) + x(x) =& 2
\\
\\
x^4 +x^2 =& 2
\\
\\
x^4 +x^2 - 2 =& 0

\end{aligned}
\end{equation}
$


By factoring, we have

$(x^2 - 1)(x^2 + 2) = 0$

The real solution are then..

$x = \pm 1$ but $y = x$ so $y = \pm 1$

Therefore, the points on the curve where the slope of the tangent line is $-1$ are $(1,1)$ and $(-1, -1)$.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...