Thursday, May 19, 2016

Calculus of a Single Variable, Chapter 8, 8.6, Section 8.6, Problem 55

To evaluate the integral problem: int_0^(pi/2) 1/(1+sin(theta)+cos(theta)) d theta , we may apply Weierstrass substitution or tangent half-angle substitution .
This helps to determine the indefinite integral of a rational function in terms of sine and cosine. We let:
u = tan(theta/2)
sin(theta) = (2u)/(1+u^2)
cos(theta) =(1-u^2)/(1+u^2)
d theta=(2 du)/(1+u^2)
Plug-in the values to express the integral problem in terms variable "u'.
int 1/(1+sin(theta)+cos(theta)) d theta=int 1/(1+(2u)/(1+u^2)+(1-u^2)/(1+u^2))*(2 du)/(1+u^2)
=int 1/(((1+u^2)/(1+u^2)+(2u)/(1+u^2)+(1-u^2)/(1+u^2)))*(2 du)/(1+u^2)
=int 1/(((1+u^2+ 2u +1-u^2)/(1+u^2)))*(2 du)/(1+u^2)
=int 1/(((2 +2u)/(1+u^2)))*(2 du)/(1+u^2)
=int 1 *(1+u^2)/ (2 +2u)*(2 du)/(1+u^2)
=int (2 du)/ (2 +2u)
=int (2 du)/ (2(1 +u))
=int (du)/(1+u)

From the table of indefinite integration table, we follow the integral formula for rational function as:
int (dx)/(ax+b)=1/aln(ax+b)
By comparing "ax+b " with "1+u or 1u +1 ", the corresponding values are: a=1 and b=1 . Then, the integral becomes:
int (du)/(1+u)=1/1ln(1u+1)
=ln(u+1)
Plug-in u =tan(x/2) on ln(u+1) , we get:
int_0^(pi/2) 1/(1+sin(theta)+cos(theta)) d theta=ln(tan(x/2)+1)|_0^(pi/2)
Apply the definite integral formula: F(x)|_a^b= F(b)-F(a) .
ln(tan(x/2)+1)|_0^(pi/2)=ln(tan(((pi/2))/2)+1)-ln(tan(0/2)+1)
=ln(tan(pi/4)+1)-ln(tan(0)+1)
=ln(1+1)-ln(0+1)
=ln(2)-ln(1)
= ln(2/1)
=ln(2) or 0.693

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...