Monday, November 2, 2015

College Algebra, Chapter 3, 3.6, Section 3.6, Problem 54

Given $\displaystyle H(x) = \sqrt{1+ \sqrt{x}} $, find functions $f$ and $g$ such that $F = f \circ g$
Since the formula for $H$ says to first take the square root then add 1 and then take the square root. We let
$g(x) = 1 + \sqrt{x}$ and $f(x) = \sqrt{x}$

$
\begin{equation}
\begin{aligned}
\text{Then }(f \circ g)(x) &= f(g(x)) && \text{Definition of } f \circ g\\
\\
(f \circ g)(x) &= f(1+\sqrt{x}) && \text{Definition of } g\\
\\
(f \circ g)(x) &= \sqrt{1+\sqrt{x}} && \text{Definition of } f\\
\\
(f \circ g)(x) &= H(x)
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...