Monday, November 16, 2015

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 30

Determine the integral $\displaystyle \int^{\frac{\pi}{3}}_0 \tan^5 x \sec^6 x dx$


$
\begin{equation}
\begin{aligned}

\int^{\frac{\pi}{3}}_0 \tan^5 x \sec^6 x dx =& \int^{\frac{\pi}{3}}_0 \tan^5 x \sec^4 x \sec^2 x dx
\\
\\
\int^{\frac{\pi}{3}}_0 \tan^5 x \sec^6 x dx =& \int^{\frac{\pi}{3}}_0 \tan^5 x (\sec^2 x)^2 \sec^2 x dx
\qquad \text{Apply Trigonometric Identity } \sec^2 x = \tan^2 x + 1
\\
\\
\int^{\frac{\pi}{3}}_0 \tan^5 x \sec^6 x dx =& \int^{\frac{\pi}{3}}_0 \tan^ 2 x(\tan^2 x + 1)^2 \sec^2 x dx
\\
\\
\int^{\frac{\pi}{3}}_0 \tan^5 x \sec^6 x dx =& \int^{\frac{\pi}{3}}_0 \tan^5x (\tan^4 + 2 \tan^2 x + 1) \sec^2x dx
\\
\\
\int^{\frac{\pi}{3}}_0 \tan^5 x \sec^6 x dx =& \int^{\frac{\pi}{3}}_0 (\tan^9 x + 2 \tan^7 x + \tan^5 x) \sec^2 x dx

\end{aligned}
\end{equation}
$


Let $u = \tan x$, then $du = \sec^2 x dx$. When $x = 0, u = 0$ and when $\displaystyle x = \frac{\pi}{3}, u = \sqrt{3}$. Thus,


$
\begin{equation}
\begin{aligned}

\int^{\frac{\pi}{3}}_0 (\tan^9 x + 2 \tan^7 x + \tan^5 x) \sec^2 x dx =& \int^{\sqrt{3}}_0 (u^9 + 2u^7 + u^5) du
\\
\\
\int^{\frac{\pi}{3}}_0 (\tan^9 x + 2 \tan^7 x + \tan^5 x) \sec^2 x dx =& \left[ \frac{u^{9 + 1}}{9 + 1} + 2 \left( \frac{u^{7 + 1}}{7 + 1} \right) + \frac{u^{5 + 1}}{5 + 1} \right]^{\sqrt{3}}_0
\\
\\
\int^{\frac{\pi}{3}}_0 (\tan^9 x + 2 \tan^7 x + \tan^5 x) \sec^2 x dx =& \left[ \frac{u^{10}}{10} + \frac{2u^8}{8} + \frac{u^6}{6} \right]^{\sqrt{3}}_0
\\
\\
\int^{\frac{\pi}{3}}_0 (\tan^9 x + 2 \tan^7 x + \tan^5 x) \sec^2 x dx =& \left[ \frac{u^{10}}{10} + \frac{u^8}{4} + \frac{u^6}{6} \right]^{\sqrt{3}}_0
\\
\\
\int^{\frac{\pi}{3}}_0 (\tan^9 x + 2 \tan^7 x + \tan^5 x) \sec^2 x dx =& \frac{(\sqrt{3})^{10}}{10} + \frac{(\sqrt{3})^8}{4} + \frac{(\sqrt{3})^6}{6} - \frac{(0)^{10}}{10} - \frac{(0)^8}{4} - \frac{(0)^6}{6}
\\
\\
\int^{\frac{\pi}{3}}_0 (\tan^9 x + 2 \tan^7 x + \tan^5 x) \sec^2 x dx =& \frac{[(\sqrt{3})^2]^5}{10} + \frac{[(\sqrt{3})^2]^4}{4} + \frac{[(\sqrt{3})^2]^3}{6}
\\
\\
\int^{\frac{\pi}{3}}_0 (\tan^9 x + 2 \tan^7 x + \tan^5 x) \sec^2 x dx =& \frac{(3)^5}{10} + \frac{(3)^4}{4} + \frac{(3)^3}{6}
\\
\\
\int^{\frac{\pi}{3}}_0 (\tan^9 x + 2 \tan^7 x + \tan^5 x) \sec^2 x dx =& \frac{243}{10} + \frac{81}{4} + \frac{27}{6}
\\
\\
\int^{\frac{\pi}{3}}_0 (\tan^9 x + 2 \tan^7 x + \tan^5 x) \sec^2 x dx =& \frac{243}{10} + \frac{81}{4} + \frac{9}{2}
\\
\\
\int^{\frac{\pi}{3}}_0 (\tan^9 x + 2 \tan^7 x + \tan^5 x) \sec^2 x dx =& \frac{486 + 405 + 90}{20}
\\
\\
\int^{\frac{\pi}{3}}_0 (\tan^9 x + 2 \tan^7 x + \tan^5 x) \sec^2 x dx =& \frac{981}{20} = 49.05

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...