Monday, November 16, 2015

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 30

Determine the integral π30tan5xsec6xdx


π30tan5xsec6xdx=π30tan5xsec4xsec2xdxπ30tan5xsec6xdx=π30tan5x(sec2x)2sec2xdxApply Trigonometric Identity sec2x=tan2x+1π30tan5xsec6xdx=π30tan2x(tan2x+1)2sec2xdxπ30tan5xsec6xdx=π30tan5x(tan4+2tan2x+1)sec2xdxπ30tan5xsec6xdx=π30(tan9x+2tan7x+tan5x)sec2xdx


Let u=tanx, then du=sec2xdx. When x=0,u=0 and when x=π3,u=3. Thus,


π30(tan9x+2tan7x+tan5x)sec2xdx=30(u9+2u7+u5)duπ30(tan9x+2tan7x+tan5x)sec2xdx=[u9+19+1+2(u7+17+1)+u5+15+1]30π30(tan9x+2tan7x+tan5x)sec2xdx=[u1010+2u88+u66]30π30(tan9x+2tan7x+tan5x)sec2xdx=[u1010+u84+u66]30π30(tan9x+2tan7x+tan5x)sec2xdx=(3)1010+(3)84+(3)66(0)1010(0)84(0)66π30(tan9x+2tan7x+tan5x)sec2xdx=[(3)2]510+[(3)2]44+[(3)2]36π30(tan9x+2tan7x+tan5x)sec2xdx=(3)510+(3)44+(3)36π30(tan9x+2tan7x+tan5x)sec2xdx=24310+814+276π30(tan9x+2tan7x+tan5x)sec2xdx=24310+814+92π30(tan9x+2tan7x+tan5x)sec2xdx=486+405+9020π30(tan9x+2tan7x+tan5x)sec2xdx=98120=49.05

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...