Friday, November 27, 2015

Single Variable Calculus, Chapter 3, 3.8, Section 3.8, Problem 3

How fast is the area of the square increasing when the radius is 30m?

Given: $\displaystyle \frac{dx}{dt} = 6 cm/s$

Required: $\displaystyle \frac{dA}{dt}$ when $\displaystyle \frac{dr}{dt}$

Solution: Let $A = x^2$ be the area of square where $x$ = side of the square

$\displaystyle \frac{dA}{dt} = \frac{dA}{dx} \left( \frac{dx}{dt} \right) = 2 x \frac{dx}{dt} $

$\displaystyle \frac{dA}{dt} = 2x \frac{dx}{dt}$

To get the value of $x$, we use the given area to get $x$


$
\begin{equation}
\begin{aligned}

A =& x^2
\\
\\
x =& \sqrt{A} ; A = 16
\\
\\
\frac{dA}{dt} =& 2 (4)(6)
\\
\\
\end{aligned}
\end{equation}
$


$\fbox{$\large \frac{dA}{dt} = 48 cm^2 /s $}$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...