Sunday, November 15, 2015

Single Variable Calculus, Chapter 3, 3.4, Section 3.4, Problem 19

Show that $\displaystyle \frac{d}{dx} (\cot x) = - \csc^2 x$

Get the reciprocal of $\cot x$

$\displaystyle \cot \frac{\cos x}{\sin x}$

Use Quotient Rule


$
\begin{equation}
\begin{aligned}


\frac{d}{dx} (\cot x) =& \frac{\displaystyle \sin x \frac{d}{dx} (\cos x) - \left[ (\cos x) \frac{d}{dx} (\sin x) \right]}{(\sin x)^2}
&& \text{}
\\
\\
\frac{d}{dx} (\cot x) =& \frac{(\sin x)(- \sin x) - (\cos x) (\cos x)}{\sin^2 x}
&& \text{Simplify the equation}
\\
\\
\frac{d}{dx} (\cot x) =& \frac{- \sin^2 x - \cos ^2 x}{\sin^2 x}
&& \text{Factor out $-1$}
\\
\\
\frac{d}{dx} (\cot x) =& \frac{- (\sin ^2 x + \cos^2 x)}{\sin ^2 x}
&& \text{Get the equivalent identities}
\\
\\
\frac{d}{dx} (\cot x) =& \frac{-1}{\sin ^2 x}
&& \text{Get the Trigonometric Identity}
\\
\\
\frac{d}{dx} (\cot x) =& - \csc ^ 2 x
&&


\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...