Saturday, November 21, 2015

Calculus of a Single Variable, Chapter 8, 8.1, Section 8.1, Problem 56

y'=1/(xsqrt(4x^2-9))
y=int1/(xsqrt(4x^2-9))dx
Apply integral substitution: x=3/2sec(u)
dx=3/2sec(u)tan(u)du
y=int1/(3/2sec(u)sqrt(4(3/2sec(u))^2-9))(3/2sec(u)tan(u))du
y=inttan(u)/sqrt(4(9/4sec^2(u))-9)du
y=inttan(u)/sqrt(9sec^2(u)-9)du
y=inttan(u)/(sqrt(9)sqrt(sec^2(u)-1))du
Now use the identity:sec^2(x)=1+tan^2(x)
y=inttan(u)/(3sqrt(1+tan^2(u)-1))du
y=inttan(u)/(3sqrt(tan^2(u)))du
y=inttan(u)/(3tan(u))du assuming tan(u) >=0
y=int1/3du
take the constant out,
y=1/3intdu
y=1/3u
Substitute back u=arcsec((2x)/3)
and add a constant C to the solution,
y=1/3arcsec((2x)/3)+C

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...