Thursday, November 26, 2015

Single Variable Calculus, Chapter 7, 7.8, Section 7.8, Problem 4

Suppose that
$\displaystyle \lim_{x \to a} f(x) = 0 \quad \lim_{x \to a} \quad \lim_{x \to a} h(x) = 1$
$\displaystyle \lim_{x \to a} p(x) = \infty \quad \lim_{x \to a} q(x) = \infty$

Which of the following limits are indeterminate form? Evaluate the limit if possible, for those that are not an indefinite form.

a.) $\displaystyle \lim_{x \to a} [f(x)]^{g(x)}$
b.) $\displaystyle \lim_{x \to a} [f(x)]^{p(x)}$
c.) $\displaystyle \lim_{x \to a} [h(x)]^{p(x)}$
d.) $\displaystyle \lim_{x \to a} [p(x)]^{f(x)}$
e.) $\displaystyle \lim_{x \to a} [p(x)]^{q(x)}$
f.) $\displaystyle \lim_{x \to a} \sqrt[q(x)]{p(x)}$


$
\begin{equation}
\begin{aligned}
\text{a. ) } \lim_{x \to a} [f(x)]^{g(x)} &= \lim_{x \to a} [f(x)]^{\lim\limits_{x \to a}g(x)}\\
\\
&= 0^0 && \Longleftarrow \text{(Indeterminate)}\\
\\
\text{b. ) } \lim_{x \to a} [f(x)]^{p(x)} &= \lim_{x \to a} [f(x)]^{\lim\limits_{x \to a} p(x)}\\
\\
&= 0^{\infty}\\
\\
&= 0\\
\\
\text{c. ) } \lim_{x \to a} [h(x)]^{p(x)} &= \lim_{x \to a} [h(x)]^{\lim\limits_{x \to a} p(x)}\\
\\
&= 1^{\infty} && \Longleftarrow \text{(Indeterminate)}\\
\\
\text{d. ) } \lim_{x \to a} [p(x)]^{f(x)} &= \lim_{x \to a} [p(x)]^{\lim\limits_{x \to a} f(x)}\\
\\
&= \infty^0 && \Longleftarrow \text{(Indeterminate)}\\
\\
\text{e. ) } \lim_{x \to a} [p(x)]^{q(x)} &= \lim_{x \to a}[p(x)]^{\lim\limits_{x \to a} q(x)}\\
\\
&= \infty^{\infty}\\
\\
&= \infty\\
\\
\text{e. ) } \lim_{x \to a} \sqrt[q(x)]{p(x)} &= \lim_{x \to a} [p(x)]^{\frac{1}{q(x)}}\\
\\
&= \lim_{x \to a} [p(x)]^{\frac{1}{\lim\limits_{x \to a}q(x)}}\\
\\
&= \infty \frac{1}{\infty}\\
\\
&= \infty^0 && \Longleftarrow \text{(Indeterminate)}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...