Thursday, July 9, 2015

Single Variable Calculus, Chapter 8, 8.1, Section 8.1, Problem 24

Evaluate $\displaystyle \int^\pi_0 x^2 \cos x dx$ by using Integration by parts.
If we let $u = x^3$ and $dv = \cos x dx$, then
$du = 3x^2 dx$ and $\displaystyle v = \int \cos x dx = \sin x$

So,
$\displaystyle \int^\pi_0 x^3 \cos x dx = uv - \int v du = x^3 \sin x - \int 3x^2 \sin x dx$
To evaluate $\displaystyle \int 3x^2 \sin x dx$, we must also use integration by parts so


if we let $u_1 = 3x^2$ and $dv_1 = \sin x dx$, then
$du_1 = 6x dx$ and $\displaystyle v_1 = \int \sin x dx = - \cos x$

So,

$
\begin{equation}
\begin{aligned}
\int 3x^2 \sin x dx = u_1 v_1 - \int v_1 du_1 &= -3x^2 \cos x - \int - 6x \cos x dx\\
\\
&= -3x^2 \cos x + 6 \int x \cos x dx
\end{aligned}
\end{equation}
$

To evaluate $\displaystyle \int x \cos dx$, we let

$
\begin{equation}
\begin{aligned}
u_2 &= x \text{ and } dv_2 = \cos x dx, \text{ then}\\
\\
du_2 &= dx \text{ and } v_2 = \sin x
\end{aligned}
\end{equation}
$


$
\begin{equation}
\begin{aligned}
\text{so } \int x \cos x dx = u_2 v_2 - \int v_2 du_2 &= x \sin x - \int \sin x dx\\
\\
&= x \sin x - (-\cos x)\\
\\
&= x \sin x + \cos x
\end{aligned}
\end{equation}
$


Going back to the first equation,

$
\begin{equation}
\begin{aligned}
\int^\pi_0 x^3 \cos x dx &= x^3 \sin x - \int 3x^2 \sin x dx\\
\\
&= x^3 \sin x - \left[ -3x^2 \cos x + 6 \left( x \sin x + \cos x \right)\right]\\
\\
&= x^3 \sin x + 3x^2 \cos x - 6 x \sin x - 6 \cos x
\end{aligned}
\end{equation}
$


Evaluating from 0 to $\pi$,
$ = - 3 \pi^2 + 12$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...