Sunday, July 19, 2015

Single Variable Calculus, Chapter 3, 3.5, Section 3.5, Problem 56

a.) Determine the equation of the tangent line to the curve $\displaystyle y= \frac{|x|}{\sqrt{2 - x^2}}$ which is called a Bullet-nose Curve at the point $(1, 1)$.

Solving for the slope


$
\begin{equation}
\begin{aligned}

y' = m =& \frac{d}{dx} \left( \frac{x}{\sqrt{2 - x^2}} \right)
\\
\\
m =& \frac{d}{dx} \left[ \frac{x }{( 2 -x^2)^{\frac{1}{2}}} \right]
\\
\\
m =& \frac{\displaystyle \left[ (2 - x^2)^{\frac{1}{2}} \cdot \frac{d}{dx} (x) \right] - \left[ (x) \cdot \frac{d}{dx} (2 - x^2)^{\frac{1}{2}} \right] }{\left[(2 - x^2)^{\frac{1}{2}}\right]^2 }
\\
\\
m =& \frac{\displaystyle (2 - x^2)^{\frac{1}{2}} (1) - (x) \left(\frac{1}{2} \right) (2 - x^2)^{\frac{-1}{2}} \cdot \frac{d}{dx} (2 - x^2) }{2 - x^2}
\\
\\
m =& \frac{\displaystyle (2 - x^2)^{\frac{1}{2}} - (x) \left(\frac{1}{2} \right) (2 - x^2)^{\frac{-1}{2}}(0 - 2x) }{2 - x^2}
\\
\\
m =& \frac{\displaystyle (2 - x^2)^{\frac{1}{2}} - \left( \frac{- \cancel{2} x^2}{\cancel{2}} \right) (2 - x^2)^{\frac{-1}{2}} }{2 - x^2 }
\\
\\
m =& \frac{(2 - x^2)^{\frac{1}{2}} + (x^2) (2 - x^2)^{\frac{-1}{2}}}{2 - x^2}
\\
\\
m =& \frac{\displaystyle (2 - x^2)^{\frac{1}{2}} + \frac{x^2}{(2 - x^2)^{\frac{1}{2}}}}{2 - x^2}
\\
\\
m =& \frac{\displaystyle \frac{ 2 - \cancel{x^2} + \cancel{x^2}}{(2 - x^2)^{\frac{1}{2}}}}{2 - x^2}
\\
\\
m =& \frac{2}{(2 - x^2)^{\frac{1}{2}} (2 - x^2)}
\\
\\
m =& \frac{2}{(2 - x^2)^{\frac{3}{2}}}
\\
\\
m =& \frac{2}{[2 - (1)^2]^{\frac{3}{2}}}
\\
\\
m =& \frac{2}{(1)^{\frac{3}{2}}}
\\
\\
m =& \frac{2}{1}
\\
\\
m =& 2

\end{aligned}
\end{equation}
$



Using the Point Slope Form



$
\begin{equation}
\begin{aligned}

y - y_1 =& m (x - x_1)
\\
\\
y - 1 =& 2 (x - 1)
\\
\\
y - 1 =& 2x - 2
\\
\\
y - 1 + 1=& 2x - 2 + 1
\\
\\
y =& 2x - 1
\qquad \qquad \text{Equation of the tangent line at $(1,1)$}

\end{aligned}
\end{equation}
$


b.) Graph the curve and the tangent line on the same screen.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...