Monday, July 13, 2015

Calculus of a Single Variable, Chapter 8, 8.3, Section 8.3, Problem 45

Indefinite integrals are written in the form of int f(x) dx = F(x) +C
where: f(x) as the integrand
F(x) as the anti-derivative function
C as the arbitrary constant known as constant of integration
For the given problem int sin(theta)sin(3theta) d theta or int sin(3theta)sin(theta) d theta has a integrand in a form of trigonometric function. To evaluate this, we apply the identity:
sin(A)sin(B) =[-cos(A+B) +cos(A-B)]/2
The integral becomes:
intsin(3theta)sin(theta)d theta= int[-cos(3theta+theta) + cos(3theta -theta)]/2 d theta
Apply the basic properties of integration: int c*f(x) dx= c int f(x) dx .
int[-cos(3theta+theta) + cos(3theta -theta)]/2 d theta= 1/2int[-cos(3theta+theta) + cos(3theta -theta)] d theta
Apply the basic integration property: int (u+v) dx = int (u) dx + int (v) dx .
1/2 *[int -cos(3theta+theta)d theta+cos(3theta -theta)d theta]
Then apply u-substitution to be able to apply integration formula for cosine function: int cos(u) du= sin(u) +C .
For the integral: int -cos(3theta+theta)d theta , we let u =3theta +theta =4theta then du= 4 d theta or (du)/4 =d theta .
int -cos(3theta+theta)d theta=int -cos(4theta)d theta
=int -cos(u) *(du)/4
= -1/4 int cos(u)du
= -1/4 sin(u) +C
Plug-in u =4theta on -1/4 sin(u) +C , we get:
int -cos(3theta+theta)d theta= -1/4 sin(4theta) +C
For the integral: intcos(3theta -theta)d theta , we let u =3theta -theta =2theta then du= 2 d theta or (du)/2 =d theta .
intcos(3theta -theta)d theta = intcos(2theta) d theta
=intcos(u) *(du)/2
= 1/2 int cos(u)du
= 1/2 sin(u) +C
Plug-in u =2 theta on 1/2 sin(u) +C , we get:
intcos(3theta -theta)d theta =1/2 sin(2theta) +C
Combining the results, we get the indefinite integral as:
intsin(theta)sin(3theta)d theta = 1/2*[ -1/4 sin(4theta) +1/2 sin(2theta)] +C
or - 1/8 sin(4theta) +1/4 sin(2theta) +C

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...