Friday, July 31, 2015

Single Variable Calculus, Chapter 2, 2.3, Section 2.3, Problem 34

Graph the functions $f(x) = - \sqrt{x^3 + x^2}, g(x) = \sqrt{x^3 + x^2}$ and $h(x) = \sqrt{x^3 + x^2}\displaystyle \sin \frac{\pi}{x}$
on the same screen and using squeeze theorem, show that $\lim \limits_{x \to 0} \sqrt{x^3 + x^2} \displaystyle \sin \frac{\pi}{x} = 0$








Proof:



$
\begin{equation}
\begin{aligned}
\lim \limits_{x \to 0} \sqrt{x^3 + x^2}& \frac{\sin \pi}{x} = \lim \limits_{x \to 0} \sqrt{x^3 + x^2} \cdot \lim \limits_{x \to 0} \frac{\sin \pi}{x} \\
\lim \limits_{x \to 0} \sqrt{x^3 + x^2}& \frac{\sin \pi}{x} \text{ does not exist, the function is undefined because the denominator is equal to 0. However, since}\\
\phantom{x}& -1 \leq \sin \frac{\pi}{x} \leq 1\\

\text{We have, }\\

\phantom{x}& - \sqrt{x^3+x^2} \leq \sqrt{x^3+x^2} \sin \frac{\pi}{x} \leq \sqrt{x^3+x^2}\\

\text{We know that, }\\

\phantom{x} & \lim \limits_{x \to 0} \sqrt{x^3 + x^2} = - \sqrt{0^3+0^2} = 0 \text{ and } \lim \limits_{x \to 0} \sqrt{x^3 + x^2}= \sqrt{0^3+0^2} = 0\\

\text{Taking} \\
\phantom{x} & f(x) = -\sqrt{x^3+x^2}, \quad g(x) = \sqrt{x^3+x^2} \sin \frac{\pi}{x}, \quad h(x) = \sqrt{x^3+x^2} \text{ in the squeeze theorem we obtain}\\

\phantom{x} & \lim \limits_{x \to 0} \sqrt{x^3 + x^2} \sin \frac{\pi}{x} = 0
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...