Friday, July 24, 2015

Calculus of a Single Variable, Chapter 5, 5.7, Section 5.7, Problem 20

We have to evaluate the integral:\int \frac{x-2}{(x+1)^2+4}dx
Let x+1=u
So, dx=du
Hence we have,
\int \frac{x-2}{(x+1)^2+4}dx=\int \frac{u-3}{u^2+4}du
=\int \frac{u}{u^2+2^2}du-\int\frac{3}{u^2+2^2}du

First we will evaluate \int \frac{u}{u^2+4}du
Let u^2+4=t
So, 2udu=dt
Therefore we can write,
\int \frac{u}{u^2+4}du=\int \frac{dt}{2t}
=\frac{1}{2}ln(t)
=\frac{1}{2}ln(u^2+4)

Now we will evaluate, \int \frac{3}{u^2+4}du
\int \frac{3}{u^2+2^2}du=\frac{3}{2}tan^{-1}(\frac{u}{2})

Therefore we have,
\int \frac{x-2}{(x+1)^2+4}dx=\frac{1}{2}ln(u^2+4)-\frac{3}{2}tan^{-1}(\frac{u}{2})+C
=\frac{1}{2}ln((x+1)^2+4)-\frac{3}{2}tan^{-1}(\frac{x+1}{2})+C
=\frac{1}{2}ln(x^2+2x+5)-\frac{3}{2}tan^{-1}(\frac{x+1}{2})+C

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...