Monday, July 13, 2015

Calculus: Early Transcendentals, Chapter 7, 7.4, Section 7.4, Problem 28

Integrate int(x^2-2x-1)/[(x-1)^2(x^2+1)]dx
Rewrite the rational function using partial fractions.
(x^2-2x-1)/[(x-1)^2(x^2+1)]=A/(x-1)+B/(x-1)^2+(Cx+D)/(x^2+1)
x^2-2x-1=A(x-1)(x^2+1)+B(x^2+1)+(Cx+D)(x-1)^2
x^2-2x-1=A(x^3-x^2+x-1)+Bx^2+B+(Cx+D)(x^2-2x+1)

x^2-2x-1=Ax^3-Ax^2-Ax-A+Bx^2+B
+ Cx^3-2Cx^2+Cx+Dx^2-2Dx+D

x^2-2x-1=(A+C)x^3+(-A+B-2C+D)x^2
+(A+C-2D)x+(-A+B+D)

Equate coefficients and solve for A, B, C, and D.
0=A+C
A=-C
-2=A+C-2D
-2=-C+C-2D
-2=-2D
D=1

1=-A+B-2C+D
1=C+B-2C+1
0=-1C+B
B=C

-1=-A+B+D
-1=C+B+1
-2=B+B
-2=2B
B=-1

C=-1

A=1

int(x^2-2x-1)/[(x-1)^2(x^2+1)]dx
=int[1/(x-1)]dx-int[1/(x-1)^2]dx+int[(-1x+1)/(x^2+1)]dx
=int[1/(x-1)]dx-int[1/(x-1)^2]dx+int[-x/(x^2+1)]dx+int[1/(x^2+1)]dx

The first integral follows the pattern int(du)/u=ln|u|+C

int[1/(x-1)]dx=ln|x-1|+C

Integrate the second integral using u-substitution.
Let u=x-1
(du)/(dx)=1
du=dx
-int1/(x-1)^2dx
=-intu^-2du
=1/u+C
1/(x-1)+C

Integrate the third integral using u-subsitution.
Let u=x^2+1

(du)/(dx)=2x
(dx)=(du)/(2x)
-intx/(x^2+1)dx
=-int(x)/(u)*(du)/(2x)
=-1/2ln|u|+C
=-1/2ln|x^2+1|+C

The fourth integral matches the pattern
intdx/(x^2+a^2)=(1/a)tan^-1(x/a)+C
int1/(x^2+1)dx
=tan^-1(x)+C

The final answer is:
ln|x-1|+1/(x-1)-1/2ln|x^2+1|+tan^-1(x)+C

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...