Thursday, July 23, 2015

College Algebra, Chapter 4, 4.5, Section 4.5, Problem 70

Find all solutions of equation

$
\begin{equation}
\begin{aligned}
&\text{(a)} 2x + 4i = 1\\
\\
&\text{(b)} x^2 - ix = 0\\
\\
&\text{(c)} x^2 + 2ix - 1 = 0\\
\\
&\text{(d)} ix^2 - 2x + i = 0
\end{aligned}
\end{equation}
$


$
\begin{equation}
\begin{aligned}
\text{a.) } 2x + 4i &=1 \\
\\
2x &= 1 - 4i && \text{Subtract } 4i\\
\\
x &= \frac{1-4i}{2} && \text{Divide by 2}
\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}
\text{b.) } x^2 - i x &= 0\\
\\
x(x-i) &=0 && \text{Factor out } x\\
\\
x &= 0 \text{ and } x - i = 0 && \text{Zero product property}\\
\\
x &= 0 \text{ and } x = i && \text{Solve for } x
\end{aligned}
\end{equation}
$


c.) To find the solution for $x^2 + 2ix - 1 = 0$, we use quadratic formula

$
\begin{equation}
\begin{aligned}
x &= \frac{-2i \pm \sqrt{(2i)^2 - 4(1)(-1)}}{2(1)}\\
\\
&= \frac{-2i \pm \sqrt{4i^2 + 4}}{2}\\
\\
&= \frac{-2i \pm \sqrt{-4 + 4}}{2}\\
\\
&= \frac{-2i}{2} = -i
\end{aligned}
\end{equation}
$

Thus, the solution is $x = -i$

d.) To find the solution for $ix^2 - 2x + i = 0$, we use quadratic formula

$
\begin{equation}
\begin{aligned}
x &= \frac{-(-2) \pm \sqrt{(-2)^2 - 4(i)(i)}}{2i} \\
\\
&= \frac{2\pm \sqrt{4-4i^2}}{2i}\\
\\
&= \frac{2 \pm \sqrt{4+4}}{2i}\\
\\
&= \frac{2 \pm 2 \sqrt{2}}{2i}\\
\\
&= \frac{1\pm\sqrt{2}}{i}
\end{aligned}
\end{equation}
$

By multiplying the complex conjugate

$
\begin{equation}
\begin{aligned}
x &= \frac{1 \pm \sqrt{2}}{i} \left( \frac{-i}{-i} \right) \\
\\
&= \frac{(1 \pm \sqrt{2})(-i)}{-i^2}\\
\\
&= \frac{(1 \pm \sqrt{2})(-i)}{1} \\
\\
&= (1 \pm \sqrt{2})(-i)
\end{aligned}
\end{equation}
$

Thus, the complex solutions are $ x = (1 + \sqrt{2})(-i)$ and $x = ( 1 - \sqrt{2})(-i)$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...