Thursday, July 23, 2015

College Algebra, Chapter 4, 4.5, Section 4.5, Problem 70

Find all solutions of equation

(a)2x+4i=1(b)x2ix=0(c)x2+2ix1=0(d)ix22x+i=0


a.) 2x+4i=12x=14iSubtract 4ix=14i2Divide by 2



b.) x2ix=0x(xi)=0Factor out xx=0 and xi=0Zero product propertyx=0 and x=iSolve for x


c.) To find the solution for x2+2ix1=0, we use quadratic formula

x=2i±(2i)24(1)(1)2(1)=2i±4i2+42=2i±4+42=2i2=i

Thus, the solution is x=i

d.) To find the solution for ix22x+i=0, we use quadratic formula

x=(2)±(2)24(i)(i)2i=2±44i22i=2±4+42i=2±222i=1±2i

By multiplying the complex conjugate

x=1±2i(ii)=(1±2)(i)i2=(1±2)(i)1=(1±2)(i)

Thus, the complex solutions are x=(1+2)(i) and x=(12)(i)

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...