Monday, July 13, 2015

Single Variable Calculus, Chapter 1, 1.3, Section 1.3, Problem 31

We need to find (a) fg, (b) gf, (c) ff, and (d) gg and state their domains


f(x)=x21,g(x)2x+1




(a)ÂÂfg=f(g(x))f(2x+1)=x21 Substitute the given values of the function f(x) and g(x) f(2x+1)=(2x+1)21 Simplify the equationf(2x+1)=4x2+4x+11 Combine like termsf(2x+1)=4x2+4x


 The domain of this function isÂ(,)



(b)ÂÂgf=g(f(x))g(x21)=2x+1 Substitute the given function g(x) to the value of x of the function f(x)g(x21)=2(x21)+1 Simplify the equationg(x21)=2x22+1 Combine like terms


gf=2x21


 The domain of this function is Â(,)


(c)ÂÂff=f(f(x))f(x21)=x21 Substitute the given function g(x) to the value of x of the function f(x)f(x21)=(x21)21 Simplify the equationf(x21)=x4x2x2+11 Combine like terms


ff=x42x2
 The domain of this function is (,)



(d)ÂÂgg=g(g(x))g(2x+1)=2x+1 Substitute the given function g(x) to the value of x of the function f(x):g(2x+1)=2(2x+1)+1 Simplify the equationg(2x+1)=4x+2+1 Combine like terms


gg=4x+3
 The domain of this function is (,)

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...