Monday, July 13, 2015

Single Variable Calculus, Chapter 1, 1.3, Section 1.3, Problem 31

We need to find (a) $f \circ g$, (b) $g \circ f$, (c) $f \circ f$, and (d) $g \circ g$ and state their domains


$f(x) = x^2 - 1, \qquad g(x) 2x + 1$




$
\begin{equation}
\begin{aligned}
\text{(a)}     f \circ g &= f(g(x))\\
f(2x+1) &= x^2-1 && \text{ Substitute the given values of the function $f(x)$ and $g(x)$ }\\
f(2x+1) &= (2x+1)^2-1 && \text{ Simplify the equation}\\
f(2x+1) &= 4x^2+4x+1-1 && \text{ Combine like terms}\\
f(2x+1) &= 4x^2+4x

\end{aligned}
\end{equation}
$


$\boxed{\text{ The domain of this function is}   (-\infty,\infty)} $



$
\begin{equation}
\begin{aligned}

\text{(b)}     g \circ f =& g(f(x))\\
g(x^2-1)=& 2x+1 && \text{ Substitute the given function $g(x$) to the value of $x$ of the function $f(x)$}\\
g(x^2-1)=& 2(x^2-1)+1 && \text{ Simplify the equation}\\
g(x^2-1)=& 2x^2-2+1 && \text{ Combine like terms}

\end{aligned}
\end{equation}
$


$ \boxed{g \circ f=2x^2-1}$


$ \boxed{ \text{ The domain of this function is }   (-\infty,\infty)}$


$
\begin{equation}
\begin{aligned}
\text{(c)}     f \circ f &= f(f(x))\\
f(x^2-1) &= x^2-1 && \text{ Substitute the given function $g(x$) to the value of $x$ of the function $f(x)$}\\
f(x^2-1) &= (x^2-1)^2-1 && \text{ Simplify the equation}\\
f(x^2-1) &= x^4-x^2-x^2+1-1 && \text{ Combine like terms}

\end{aligned}
\end{equation}
$


$\boxed{f \circ f=x^4-2x^2}$
$\boxed{\text{ The domain of this function is } (-\infty,\infty)}$



$
\begin{equation}
\begin{aligned}

\text{(d)}     g \circ g &= g(g(x))\\
g(2x+1) &= 2x+1 && \text{ Substitute the given function $g(x$) to the value of $x$ of the function $f(x)$:}\\
g(2x+1) &= 2(2x+1)+1 && \text{ Simplify the equation}\\
g(2x+1) &= 4x+2+1 && \text{ Combine like terms}\\

\end{aligned}
\end{equation}
$


$\boxed{g \circ g =4x+3}$
$\boxed{\text{ The domain of this function is } (-\infty,\infty)}$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...