Monday, July 6, 2015

Single Variable Calculus, Chapter 4, 4.7, Section 4.7, Problem 64

Suppose that two vertical poles $P\theta$ and $ST$ are secured by a rope $PRS$ going from the top of the first pole to a point $R$ on the ground between the poles and then to the top of the second poles as in the figure. Show that the shortest length of such rope occues when $\theta_1 = \theta_2$.




The total length of the rope is $L = L_1 + L_2$, then...

$
\begin{equation}
\begin{aligned}
\sin \theta_1 &= \frac{a}{L_1} \qquad \text{and} \qquad \sin \theta_2 = \frac{b}{\theta_2}
\end{aligned}
\end{equation}
$


So, $\quad \displaystyle L = \frac{a}{\sin \theta_1} + \frac{b}{\sin \theta_2}$

If we take the derivative of $L$ with respect to $\theta$,

$
\begin{equation}
\begin{aligned}
\frac{dL}{d\theta_1} &= \frac{d}{d \theta_1} \left( \frac{a}{\sin \theta_1} \right) + \frac{d}{d\theta_2} \left( \frac{b}{\sin \theta_2} \right) \frac{d\theta_2}{d\theta_1}\\
\\
\frac{dL}{d\theta_1} &= -a \csc \theta_1 \cot \theta_1 - b \csc \theta_2 \cot \theta_2 \frac{d\theta_2}{d\theta_1} \qquad \Longleftarrow \text{(Equation 1)}
\end{aligned}
\end{equation}
$


$
\begin{equation}
\begin{aligned}
\text{We know that segment } |Q T| = \frac{a}{\tan \theta_1} + \frac{b}{\tan \theta_2}
\end{aligned}
\end{equation}
$


If we take the derivative of the segment $|QT|$ with respect to $\theta_1$, we get...

$
\begin{equation}
\begin{aligned}
\frac{d|QT|}{d\theta_1} &= \frac{d}{d \theta_1} \left( \frac{a}{\tan \theta_1} \right) + \frac{d}{d \theta_2} \left( \frac{b}{\tan \theta_2} \right) \frac{d\theta_2}{d \theta_1}\\
\\
\frac{d|QT|}{d\theta_1} &= -a \csc^2 \theta_1 - b \csc^2 \theta_2 \left( \frac{d\theta_2}{d\theta_1} \right)
\end{aligned}
\end{equation}
$


when $\displaystyle \frac{d|QT|}{d \theta_1} = 0$,

$
\begin{equation}
\begin{aligned}
0 &= -a \csc^2 \theta_1 - b \csc^2 \theta_2 \left( \frac{d\theta_2}{d\theta_1} \right)\\
\\
\frac{d\theta_2}{d\theta_1} &= \frac{-a \csc^2 \theta_1}{b \csc^2 \theta_2}
\end{aligned}
\end{equation}
$

By using Equation 1, we get...
$\displaystyle \frac{dL}{d \theta_1} = - a \csc \theta_1 \cot \theta_1 - b \csc \theta_2 \cot \theta_2 \left( \frac{-a \csc^2 \theta_1}{b \csc^2 \theta_2} \right)$

when $\displaystyle \frac{dL}{d \theta_1} = 0,$

$
\begin{equation}
\begin{aligned}
\cot \theta_1 \csc \theta_2 &= \csc \theta_1 \cot \theta_2\\
\\
\frac{\cot \theta_1}{\csc \theta_1} &= \frac{\cot \theta_2}{\csc \theta_2}\\
\\
\cos \theta_1 &= \cos \theta_2
\end{aligned}
\end{equation}
$


Therefore, we can say that shortest length of such a rope occurs hwen $\theta_1 = \theta_2$.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...