Saturday, July 4, 2015

College Algebra, Chapter 5, 5.4, Section 5.4, Problem 22

Determine the solution of the exponential equation $10^{1-x} = 6^x$.

$
\begin{equation}
\begin{aligned}
10^{1-x} &= 6^x\\
\\
\log 10^{1-x} &= \log 6^x && \text{Take $\log$ of each side}\\
\\
(1-x)\log 10 &= x \log 6 && \text{Law of Logarithms } \log_a A^c = C \log_a A\\
\\
1 - x &= \frac{x \log 6}{\log 10} && \text{Divide by } \log 10\\
\\
1 &= x \frac{\log 6}{\log 10 } + x && \text{ Add } x\\
\\
1 &= x \left( \frac{\log 6}{\log 10} + 1 \right) && \text{Factor out } x\\
\\
x &= \frac{1}{\left( \frac{\log 6}{\log 10} + 1 \right)} && \text{Divide by } \left( \frac{\log 6}{\log 10} + 1 \right)\\
\\
x &= 0.5624
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...