Friday, April 10, 2015

sum_(n=1)^oo (-1)^n/sqrt(n) Determine whether the series converges absolutely or conditionally, or diverges.

To determine the convergence or divergence of the series sum_(n=1)^oo (-1)^n/sqrt(n) , we may apply the Root Test.
In Root test, we determine the limit as:
lim_(n-gtoo) root(n)(|a_n|)= L
or
lim_(n-gtoo) |a_n|^(1/n)= L
 Then ,we follow the conditions:
a) L lt1 then the series converges absolutely
b) Lgt1 then the series diverges
c) L=1 or does not exist  then the test is inconclusive.The series may be divergent, conditionally convergent, or absolutely convergent.
For the given series sum_(n=1)^oo (-1)^n/sqrt(n) , we have a_n =(-1)^n/sqrt(n).
Applying the Root test, we set-up the limit as: 
lim_(n-gtoo) |(-1)^n/sqrt(n)|^(1/n) =lim_(n-gtoo) (1/sqrt(n))^(1/n) Note: |(-1)^n| = 1
Apply radical property: root(n)(x) =x^(1/n) and Law of exponent: (x/y)^n = x^n/y^n .
lim_(n-gtoo) (1/sqrt(n))^(1/n) =lim_(n-gtoo) (1/n^(1/2))^(1/n)
                          =lim_(n-gtoo) 1^(1/n) /n^(1/2*1/n)
                          =lim_(n-gtoo) 1^(1/n) /n^(1/(2n))
                          =lim_(n-gtoo) 1 /n^(1/(2n))
Apply the limit property: lim_(x-gta)[(f(x))/(g(x))] =(lim_(x-gta) f(x))/(lim_(x-gta) g(x)) .
lim_(n-gtoo) 1 /n^(1/(2n)) =(lim_(n-gtoo) 1 )/(lim_(n-gtoo)n^(1/(2n)))
                    = 1/1
                    =1
The limit value L = 1 implies that the series may be divergent, conditionally convergent, or absolutely convergent.
To verify, we use alternating series test on sum a_n .
a_n = 1/sqrt(n) is positive and decreasing from N=1 
lim_(n-gtoo)1/sqrt(n) = 1/oo = 1
Based on alternating series test condition,  the series  sum_(n=1)^oo (-1)^n/sqrt(n) converges.
Apply p-series test on sum |a_n| .
sum_(n=1)^oo |(-1)^n/sqrt(n)|=sum_(n=1)^oo 1/sqrt(n).
                     =sum_(n=1)^oo 1/n^(1/2)
Based on p-series test condition,  we have p=1/2 that satisfies 0ltplt=1 .
Thus, the series  sum_(n=1)^oo |(-1)^n/sqrt(n)| diverges.                             
Conclusion:
sum_(n=1)^oo (-1)^n/sqrt(n) is conditionally convergent since  sum_(n=1)^oo (-1)^n/sqrt(n) is convergent  and  sum_(n=1)^oo |(-1)^n/sqrt(n)| is divergent.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...