To determine the convergence or divergence of the series sum_(n=1)^oo (-1)^n/sqrt(n) , we may apply the Root Test.
In Root test, we determine the limit as:
lim_(n-gtoo) root(n)(|a_n|)= L
or
lim_(n-gtoo) |a_n|^(1/n)= L
Then ,we follow the conditions:
a) L lt1 then the series converges absolutely
b) Lgt1 then the series diverges
c) L=1 or does not exist then the test is inconclusive.The series may be divergent, conditionally convergent, or absolutely convergent.
For the given series sum_(n=1)^oo (-1)^n/sqrt(n) , we have a_n =(-1)^n/sqrt(n).
Applying the Root test, we set-up the limit as:
lim_(n-gtoo) |(-1)^n/sqrt(n)|^(1/n) =lim_(n-gtoo) (1/sqrt(n))^(1/n) Note: |(-1)^n| = 1
Apply radical property: root(n)(x) =x^(1/n) and Law of exponent: (x/y)^n = x^n/y^n .
lim_(n-gtoo) (1/sqrt(n))^(1/n) =lim_(n-gtoo) (1/n^(1/2))^(1/n)
=lim_(n-gtoo) 1^(1/n) /n^(1/2*1/n)
=lim_(n-gtoo) 1^(1/n) /n^(1/(2n))
=lim_(n-gtoo) 1 /n^(1/(2n))
Apply the limit property: lim_(x-gta)[(f(x))/(g(x))] =(lim_(x-gta) f(x))/(lim_(x-gta) g(x)) .
lim_(n-gtoo) 1 /n^(1/(2n)) =(lim_(n-gtoo) 1 )/(lim_(n-gtoo)n^(1/(2n)))
= 1/1
=1
The limit value L = 1 implies that the series may be divergent, conditionally convergent, or absolutely convergent.
To verify, we use alternating series test on sum a_n .
a_n = 1/sqrt(n) is positive and decreasing from N=1
lim_(n-gtoo)1/sqrt(n) = 1/oo = 1
Based on alternating series test condition, the series sum_(n=1)^oo (-1)^n/sqrt(n) converges.
Apply p-series test on sum |a_n| .
sum_(n=1)^oo |(-1)^n/sqrt(n)|=sum_(n=1)^oo 1/sqrt(n).
=sum_(n=1)^oo 1/n^(1/2)
Based on p-series test condition, we have p=1/2 that satisfies 0ltplt=1 .
Thus, the series sum_(n=1)^oo |(-1)^n/sqrt(n)| diverges.
Conclusion:
sum_(n=1)^oo (-1)^n/sqrt(n) is conditionally convergent since sum_(n=1)^oo (-1)^n/sqrt(n) is convergent and sum_(n=1)^oo |(-1)^n/sqrt(n)| is divergent.
Friday, April 10, 2015
sum_(n=1)^oo (-1)^n/sqrt(n) Determine whether the series converges absolutely or conditionally, or diverges.
Subscribe to:
Post Comments (Atom)
Why is the fact that the Americans are helping the Russians important?
In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...
-
There are a plethora of rules that Jonas and the other citizens must follow. Again, page numbers will vary given the edition of the book tha...
-
The poem contrasts the nighttime, imaginative world of a child with his daytime, prosaic world. In the first stanza, the child, on going to ...
-
The given two points of the exponential function are (2,24) and (3,144). To determine the exponential function y=ab^x plug-in the given x an...
-
Robinson Crusoe, written by Daniel Defoe, is a novel. A novel is a genre defined as a long imaginative work of literature written in prose. ...
-
Hello! This expression is already a sum of two numbers, sin(32) and sin(54). Probably you want or express it as a product, or as an expressi...
-
Macbeth is reflecting on the Weird Sisters' prophecy and its astonishing accuracy. The witches were totally correct in predicting that M...
-
The play Duchess of Malfi is named after the character and real life historical tragic figure of Duchess of Malfi who was the regent of the ...
No comments:
Post a Comment