Sunday, April 26, 2015

Single Variable Calculus, Chapter 4, 4.5, Section 4.5, Problem 2

Use the guidelines of curve sketching to sketch the curve. $y = x^3 + 6x^2 + 9x$

The guidelines of Curve Sketching
A. Domain.
We know that $f(x)$ is a polynomial function having a domain of $(-\infty, \infty)$


B. Intercepts.
Solving for $y$-intercept, when $x=0$.
$y = 0^3 + 6(0)^2 + 9(0) = 0$
Solving for $x$-intercept, when $y = 0$.

$
\begin{equation}
\begin{aligned}
0 &= x^3 + 6x^2 + 9x\\
\\
0 &= x(x^2 + 6x + 9)\\
\\
x &= 0 \text{ and } x^2 + 6x + 9 = 0 \qquad \Longleftarrow \text{(By using Quadratic Formula)}
\end{aligned}
\end{equation}
$

The $x$-intercept are, $x = 0 $ and $x = -3$


C. Symmetry.
The function is not symmetric to both $y$-axis and origin.


D. Asymptotes.
None.


E. Intervals of Increase or Decrease.
If we take the derivative of $f(x)$, we have $ y' = 3x^2 + 12x + 9$
When $y' =0$, $\quad 0 = 3x^2 + 12x + 9$
The critical numbers are, $x = -1$ and $x = -3$
So, the intervals of increase or decrease are.

$
\begin{array}{|c|c|c|}
\hline\\
\text{Interval} & f'(x) & f\\
\hline\\
x < - 3 & + & \text{increasing on } (-\infty, -3)\\
\hline\\
-3 < x < -1 & - & \text{decreasing on } (-3,-1)\\
\hline\\
x > -1 & + & \text{increasing on } (-1, \infty)\\
\hline
\end{array}
$


F. Local Maximum and Minimum Values.
since $f'(x)$ changes from positive to negative at $x = 3$, then $f(-3) = 0$ is a local maximum. On the other hand, since $f'(x)$ changes from negative to positive of $x = -1$, then $f(-1) = -4$ is a local minimum.

G. Concavity and Points of Inflection.

$
\begin{equation}
\begin{aligned}
\text{if } f'(x) &= 3x^2 + 12x + 9, \text{ then}\\
\\
f''(x) &= 6x + 12
\end{aligned}
\end{equation}
$

when $f''(x) = 0$, the inflection points is at $x = -2$
Thus, the concavity can be determined by divding the inteval to...

$
\begin{array}{|c|c|c|}
\hline\\
\text{Interval} & f''(x) & \text{Concavity}\\
\hline\\
x < -2 & - & \text{Downward}\\
\hline\\
x > 2 & + & \text{Downard}\\
\hline
\end{array}
$


H. Sketch the Curve

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...