Friday, April 17, 2015

Intermediate Algebra, Chapter 3, Test, Section Test, Problem 12

Determine an equation of the line "through $(-2,3)$ and $(6,-1)$", and write it in the following form:

a.) Slope-intercept form

Using the Slope Formula

$\displaystyle m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-1 - 3}{6 - (-2)} = - \frac{4}{8} = - \frac{1}{2}$

The slope is $\displaystyle - \frac{1}{2}$.

Using Point Slope Form


$
\begin{equation}
\begin{aligned}

y - y_1 =& m(x - x_1)
&& \text{Point Slope Form}
\\
\\
y - 3 =& - \frac{1}{2} [x - (-2)]
&& \text{Substitute } x = -2, y = 3 \text{ and } m = - \frac{1}{2}
\\
\\
y - 3 =& - \frac{1}{2}x - 1
&& \text{Distributive Property}
\\
\\
y =& - \frac{1}{2}x + 2
&& \text{Slope Intercept Form}

\end{aligned}
\end{equation}
$



b.) Standard Form


$
\begin{equation}
\begin{aligned}

& y = - \frac{1}{2}x + 2
&& \text{Slope Intercept Form}
\\
\\
& \frac{1}{2}x + y = 2
&& \text{Standard Form}
\\
& \text{or}
&&
\\
& x + 2y = 4
&&

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...