The formula of arc length of a parametric equation on the interval alt=tlt=b is:
L = int_a^b sqrt((dx/dt)^2+(dy/dt)^2) dt
The given parametric equation is:
x = e^(-t)cost
y=e^(-t)sint
The derivative of x and y are with respect to t are:
dx/dt = e^(-t) * (cost)' + (e^(-t))'*cost
dx/dt = e^(-t)*(-sint) + e^(-t)*(-1)cost
dx/dt=-e^(-t)sint-e^(-t)cost
dy/dt = e^(-t)*(sint)' + (e^(-t))'*sint
dy/dt = e^(-t)cost + e^(-t)*(-1)sint
dy/dt=e^(-t)cost - e^(-t)sint
Plugging them to the formula, the integral needed to compute the arc length of the given parametric equation on the interval 0lt=tlt=pi/2 is:
L= int_0^(pi/2) sqrt( (-e^(-t)sint-e^(-t)cost)^2 + (e^(-t)cost - e^(-t)sint)^2) dt
The simplified form of the integral is:
L= int_0^(pi/2) sqrt( (-e^(-t)(sint + cost))^2+ (e^(-t)(cost-sint))^2)dt
L=int_0^(pi/2)sqrt( e^(-2t)(sint+cost)^2 + e^(-2t)(cost-sint)^2) dt
L=int_0^(pi/2) sqrt(e^(-2t)((sint+cost)^2 + (cost-sint)^2) )dt
L= int_0^(pi/2) e^(-t) sqrt((sint+cost)^2+(cost-sint)^2)dt
L=int_0^(pi/2) e^(-t) sqrt(sin^2t +2sintcost +cos^2t+cos^2t -2sintcost +sin^2t)dt
L= int_0^(pi/2) e^(-t) sqrt(2sin^2t + 2cos^2t)
L= int_0^(pi/2) e^(-t)sqrt(2(sin^2t+cos^2t))
L= int_0^(pi/2) e^(-t) sqrt(2*(1))dt
L= int_0^(pi/2) e^(-t) sqrt(2)dt
L= sqrt2 int_0^(pi/2) e^(-t)dt
L= -sqrt2 e^(-t) |_0^(pi/2)
L =-sqrt2 (e^(-pi/2) - e^0)
L=-sqrt2(e^(-pi/2)-1)
L=sqrt2 - sqrt2e^(-pi/2)
Therefore, the arc length of the curve is sqrt2 - sqrt2e^(-pi/2) units.
Saturday, April 18, 2015
Calculus of a Single Variable, Chapter 10, 10.3, Section 10.3, Problem 47
Subscribe to:
Post Comments (Atom)
Why is the fact that the Americans are helping the Russians important?
In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...
-
There are a plethora of rules that Jonas and the other citizens must follow. Again, page numbers will vary given the edition of the book tha...
-
The poem contrasts the nighttime, imaginative world of a child with his daytime, prosaic world. In the first stanza, the child, on going to ...
-
The given two points of the exponential function are (2,24) and (3,144). To determine the exponential function y=ab^x plug-in the given x an...
-
The play Duchess of Malfi is named after the character and real life historical tragic figure of Duchess of Malfi who was the regent of the ...
-
The only example of simile in "The Lottery"—and a particularly weak one at that—is when Mrs. Hutchinson taps Mrs. Delacroix on the...
-
Hello! This expression is already a sum of two numbers, sin(32) and sin(54). Probably you want or express it as a product, or as an expressi...
-
Macbeth is reflecting on the Weird Sisters' prophecy and its astonishing accuracy. The witches were totally correct in predicting that M...
No comments:
Post a Comment