Saturday, April 18, 2015

Calculus of a Single Variable, Chapter 10, 10.3, Section 10.3, Problem 47

The formula of arc length of a parametric equation on the interval alt=tlt=b is:
L = int_a^b sqrt((dx/dt)^2+(dy/dt)^2) dt
The given parametric equation is:
x = e^(-t)cost
y=e^(-t)sint
The derivative of x and y are with respect to t are:
dx/dt = e^(-t) * (cost)' + (e^(-t))'*cost
dx/dt = e^(-t)*(-sint) + e^(-t)*(-1)cost
dx/dt=-e^(-t)sint-e^(-t)cost
dy/dt = e^(-t)*(sint)' + (e^(-t))'*sint
dy/dt = e^(-t)cost + e^(-t)*(-1)sint
dy/dt=e^(-t)cost - e^(-t)sint
Plugging them to the formula, the integral needed to compute the arc length of the given parametric equation on the interval 0lt=tlt=pi/2 is:
L= int_0^(pi/2) sqrt( (-e^(-t)sint-e^(-t)cost)^2 + (e^(-t)cost - e^(-t)sint)^2) dt
The simplified form of the integral is:
L= int_0^(pi/2) sqrt( (-e^(-t)(sint + cost))^2+ (e^(-t)(cost-sint))^2)dt
L=int_0^(pi/2)sqrt( e^(-2t)(sint+cost)^2 + e^(-2t)(cost-sint)^2) dt
L=int_0^(pi/2) sqrt(e^(-2t)((sint+cost)^2 + (cost-sint)^2) )dt
L= int_0^(pi/2) e^(-t) sqrt((sint+cost)^2+(cost-sint)^2)dt
L=int_0^(pi/2) e^(-t) sqrt(sin^2t +2sintcost +cos^2t+cos^2t -2sintcost +sin^2t)dt
L= int_0^(pi/2) e^(-t) sqrt(2sin^2t + 2cos^2t)
L= int_0^(pi/2) e^(-t)sqrt(2(sin^2t+cos^2t))
L= int_0^(pi/2) e^(-t) sqrt(2*(1))dt
L= int_0^(pi/2) e^(-t) sqrt(2)dt
L= sqrt2 int_0^(pi/2) e^(-t)dt
L= -sqrt2 e^(-t) |_0^(pi/2)
L =-sqrt2 (e^(-pi/2) - e^0)
L=-sqrt2(e^(-pi/2)-1)
L=sqrt2 - sqrt2e^(-pi/2)
Therefore, the arc length of the curve is sqrt2 - sqrt2e^(-pi/2) units.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...