Wednesday, April 29, 2015

Precalculus, Chapter 7, 7.3, Section 7.3, Problem 31

EQ1: 3x-5y+5z=1
EQ2: 5x-2y+3z=0
EQ3: 7x-y+3z=0
To solve this system of equations, let's use elimination method. In elimination method, a variable or variables should be eliminated to get the value of the other variable.
Let's eliminate y by multiply EQ3 by -5. Then add it with EQ1.
EQ1: 3x-5y+5z=1
EQ3: (7x-y+3z=0)*(-5)

3x-5y+5z=1
+ -35x+5y-15z=0
----------------
-32x - 10z=1 Let this be EQ4.
Eliminate y again by multiplying EQ3 by -2. And add it with EQ2.
EQ2: 5x-2y+3z=0
EQ3: (7x-y+3z=0)*(-2)

5x - 2y+3z=0
+ -14x+2y-6z=0
----------------
-9x-3z=0
3x+z=0 Let this be EQ5.
Then, consider two new equations.
EQ4: -32x-10z=1
EQ5: 3x + z=0
Eliminate the z in these two equations by multiplying EQ5 with 10. And, add them.
-32x-10z=1
+ 30x + 10z=0
-------------
-2x=1
Then, isolate the x.
(-2x)/(-2)=1/(-2)
x=-1/2
Plug-in this value of x to either EQ4 or EQ5.
EQ5: 3x+z=0
3(-1/2)+z=0
And, solve for z.
-3/2+z=0
-3/2+3/2+z=0+3/2
z=3/2
Then, plug-in the values of x and z to either of the original equations.
EQ3: 7x-y+3z=0
7(-1/2)-y+3(3/2)=0
-7/2-y+9/2=0
1-y=0
1-1-y=0-1
-y=-1
(-y)/(-1)=(-1)/(-1)
y=1
To check, plug-in the values of x, y and z to the three original equations. If the resulting conditions are all true, then, it verifies it is the solution of the given system of equations.
EQ1: 3x-5y+5z=1
3(-1/2)-5(1)+5(3/2)=1
-3/2-5+15/2=1
-3/2-10/2+15/2=1
2/2=1
1=1 :. True

EQ2: 5x-2y+3z=0
5(-1/2)-2(1)+3(3/2)=0
-5/2-2+9/2=0
-5/2-4/2+9/2=0
0/2=0
0=0 :. True

EQ3: 7x-y+3z=0
7(-1/2)-1+3(3/2)=0
-7/2-1+9/2=0
-7/2-2/2+9/2=0
0/2=0
0=0 :. True

Therefore, the solution is (-1/2,1,3/2) .

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...