Saturday, April 4, 2015

Single Variable Calculus, Chapter 3, 3.5, Section 3.5, Problem 50

Find the first and second derivatives of $\displaystyle y = \frac{4x}{\sqrt{x+1}}$
Solving for the first derivative of the given function

$
\begin{equation}
\begin{aligned}
y' &= \frac{d}{dx} \left(\frac{4x}{\sqrt{x+1}} \right)\\
\\
y' &= \frac{d}{dx} \left[\frac{4x}{(x+1)^{\frac{1}{2}}} \right]\\
\\
y' &= \frac{\left[ (x+1)^{\frac{1}{2}} \cdot \frac{d}{dx} (4x) - (4x) \cdot \frac{d}{dx} (x+1)^{\frac{1}{2}}\right]}{\left[ (x+1)^{\frac{1}{2}}\right]^2}\\
y\ &= \frac{(x+1)^{\frac{1}{2}} (4) - (4x) \left( \frac{1}{2} \right) (x+1)^{\frac{-1}{2}} \cdot \frac{d}{dx} (x+1) }{x+1}\\
\\
y' &= \frac{(x+1)^{\frac{1}{2}}(4) - (2x)(x+1)^{\frac{-1}{2}}(1+0)}{x+1}\\
\\
y' &= \frac{(x+1)^{\frac{1}{2}} (4) - \frac{2x}{(x+1)^{\frac{1}{2}}}}{x+1}\\
\\
y' &= \frac{(4)(x+1)-2x}{(x+1)(x+1)^{\frac{1}{2}}}\\
\\
y' &= \frac{4x+4-2x}{(x+1)^{\frac{3}{2}}}\\
\\
y' &= \frac{2x+4}{(x+1)^{\frac{3}{2}}}
\end{aligned}
\end{equation}
$

Solving for the second derivative of the given function


$
\begin{equation}
\begin{aligned}
y'' &= \frac{d}{dx} \left[ \frac{2x+4}{(x+1)^{\frac{3}{2}}} \right]\\
\\
y'' &= \frac{\left[ (x+1)^{\frac{3}{2}} \cdot \frac{d}{dx} (2x+4) - (2x+4) \cdot \frac{d}{dx}(x+1)^{\frac{3}{2}} \right]}{\left[ (x+1)^{\frac{3}{2}}\right]^2}
\\
y'' &= \frac{\left[ (x+1)^{\frac{3}{2}} (2+0) - (2x+4) \left( \frac{3}{2} \right) (x+1)^{\frac{1}{2}} \cdot \frac{d}{dx} (x+1)\right]}{(x+1)^3}\\
\\
y'' &= \frac{(2)(x+1)^{\frac{3}{2}} - \left( \frac{3}{2} \right)(2x+4)(x+1)^{\frac{1}{2}}(1+0)}{(x+1)^3}\\
\\
y'' &= \frac{(2) (x+1)^{\frac{3}{2}} - \left( \frac{3}{\cancel{2}}\right)(\cancel{2})(x+2) (x+1)^{\frac{1}{2}} }{(x+1)^3}\\
\\
y'' &= \frac{2(x+1)^{\frac{3}{2}} - 3 (x+2)(x+1)^{\frac{1}{2}}}{(x+1)^3}\\
\\
y'' &= \frac{2(x+1)^{\frac{3}{2}}-(3x+6)(x+1)^{\frac{1}{2}}}{(x+1)^3}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...