Friday, April 3, 2015

Single Variable Calculus, Chapter 3, 3.2, Section 3.2, Problem 43

Find $f'(x)$ and $f''(x)$ on the function $f(x) = 1 + 4x - x^2$ using the definition of a derivative. Then graph $f, f'$ and $f''$ on a common screen and check to see if your answers are reasonable.

Using the definition of derivative


$
\begin{equation}
\begin{aligned}

\qquad f'(x) =& \lim_{h \to 0} \frac{f(x + h) -f(x)}{h}
&&
\\
\\
\qquad f'(x) =& \lim_{h \to 0} \frac{1 + 4 (x + h) - (1 + 4x - x^2)}{h}
&& \text{Substitute $f(x + h)$ and $f(x)$}
\\
\\
\qquad f'(x) =& \lim_{h \to 0} \frac{1 + 4x + 4h - (x^2 + 2xh + h^2) - 1 - 4x + x^2}{h}
&& \text{Expand the equation}
\\
\\
\qquad f'(x) =& \lim_{h \to 0} \frac{\cancel{1} + \cancel{4x} + 4h - \cancel{x^2} - 2xh - h^2 - \cancel{1} - \cancel{4x} + \cancel{x^2}}{h}
&& \text{Combine like terms}
\\
\\
\qquad f'(x) =& \lim_{h \to 0} \frac{4h - 2xh - h^2}{h}
&& \text{Factor the numerator}
\\
\\
\qquad f'(x) =& \lim_{h \to 0} \frac{\cancel{h}(4 - 2x - h)}{\cancel{h}}
&& \text{Cancel out like terms}
\\
\\
f'(x) =& \lim_{h \to 0} (4 - 2x - h) \quad = 4 - 2x - 0
&& \text{Evaluate the limit}
\\
\\
f'(x) =& 4 - 2x
&&

\end{aligned}
\end{equation}
$


Using the 2nd derivative of the definition


$
\begin{equation}
\begin{aligned}

\qquad f''(x) =& \lim_{h \to 0} \frac{f'(x + h) - f'(x)}{h}
&&
\\
\\
\qquad f''(x) =& \lim_{h \to 0} \frac{4 - 2 (x + h) - (4 - 2x)}{h}
&& \text{Substitute $f'(x + h)$ and $f'(x)$}
\\
\\
\qquad f''(x) =& \lim_{h \to 0} \frac{4 - 2x - 2h - 4 + 2x}{h}
&& \text{Expand the equation}
\\
\\
\qquad f''(x) =& \lim_{h \to 0} \frac{\cancel{4} - \cancel{2x} - 2h - \cancel{4} + \cancel{2x}}{h}
&& \text{Combine like terms}
\\
\\
\qquad f''(x) =& \lim_{h \to 0} \frac{-2 \cancel{h}}{\cancel{h}}
&& \text{Cancel out like terms}
\\
\\
f''(x) =& -2
&&
\end{aligned}
\end{equation}
$


Graph $f, f'$ and $f''$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...