Sunday, April 12, 2015

Calculus of a Single Variable, Chapter 5, 5.7, Section 5.7, Problem 18

Recall indefinite integral follows int f(x) dx = F(x)+C
where:
f(x) as the integrand
F(x) as the antiderivative of f(x)
C as the constant of integration.

The given problem: int (x^2+3)/(xsqrt(x^2-4)) dx has an integrand of f(x)=(x^2+3)/(xsqrt(x^2-4)) .
Apply u-substitution on f(x) dx by letting u =x^2 then du = 2x dx or dx= (du)/(2x) :
int (x^2+3)/(xsqrt(x^2-4))dx =int (u+3)/(xsqrt(u-4))*(du)/(2x)
=int ((u+3)du)/(2x^2sqrt(u-4))
=int ((u+3)du)/(2usqrt(u-4))
Apply the basic integration property: int c*f(x) dx = c int f(x) dx :
int ((u+3)du)/(2usqrt(u-4))=(1/2)int ((u+3)du)/(usqrt(u-4))
Apply the basic integration property for sum:
int (u+v) dx = int (u) dx+int (v) dx.
(1/2)int ((u+3)du)/(usqrt(u-4))=(1/2) [int (udu)/(usqrt(u-4))+int (3du)/(usqrt(u-4))]
For the integration of theint (udu)/(usqrt(u-4)) , we can cancel out the u:
int (udu)/(usqrt(u-4))=int (du)/sqrt(u-4)
Let v= u-4 then dv =du .
Apply the Law of exponents: sqrt(x)= x^1/2 and 1/x^n= x^-n , we get:
int (du)/sqrt(u-4)=int (dv)/sqrt(v)


Apply the Power Rule for integration: int x^n dx= x^(n+1)/(n+1)+C
int v^(-1/2)dv=v^((-1)/2+1)/((-1)/2+1) +C
= v^(1/2)/(1/2)
=v^(1/2)*(2/1)
= 2v^(1/2) or 2sqrt(v)
With v= u-4 then 2sqrt(v) = 2sqrt(u-4) .
The integral becomes:
int (du)/sqrt(u-4)=2sqrt(u-4).

For the integration of int (3du)/(usqrt(u-4)) , we basic integration property: int c*f(x) dx = c int f(x)
int (3du)/(usqrt(u-4))=3int (du)/(usqrt(u-4))
Let: v= sqrt(u-4)
Then square both sides to get v^2=u-4 then v^2+4 =u
Applying implicit differentiation on v^2=u-4 , we get: 2vdv = du .
Plug-in du =2v dv , u=v^2+4 and v=sqrt(u-4) , we get:
3 int (du)/(usqrt(u-4))=3int (2vdv)/((v^2+4)*v)
=3int (2dv)/((v^2+4))
=3*2int (dv)/(v^2+4)
=6int (dv)/(v^2+4)
The integral part resembles the basic integration for inverse tangent function:
int (dx)/(x^2+a^2) = (1/a)arctan(u/a)+C
Then,
6int (dv)/(v^2+4) =6*(1/2)arctan(v/2)+C
=3arctan(v/2)+C
Plug-in v =sqrt(u-4) , we get:
int (3du)/(usqrt(u-4)) =3arctan(sqrt(u-4)/2)+C

Combining the results, we get:
(1/2) [int (udu)/(usqrt(u-4))+int (3du)/(usqrt(u-4))] = (1/2)*[2sqrt(u-4)+3arctan(sqrt(u-4)/2)]+C
=sqrt(u-4)+3/2arctan(sqrt(u-4)/2)+C
Plug-in u = x^2 to get the final answer:
int (x^2+3)/(xsqrt(x^2-4)) dx= sqrt(x^2-4)+3/2arctan(sqrt(x^2-4)/2)+C

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...