Tuesday, October 7, 2014

Single Variable Calculus, Chapter 5, 5.5, Section 5.5, Problem 50

Find the definite integral $\displaystyle \int^{\frac{T}{2}}_0 \sin \left( \frac{2 \pi t}{T} - \alpha \right) dt$

Let $\displaystyle u = \frac{2 \pi t}{T} - \alpha$, then $du = \frac{2 \pi}{T} dt$, so $\displaystyle dt = \frac{T}{2 \pi} du$. When $t = 0, u = - \alpha$ and when $\displaystyle t = \frac{T}{2}, u = \pi - \alpha$. Thus,



$
\begin{equation}
\begin{aligned}

\int^{\frac{T}{2}}_0 \sin \left( \frac{2 \pi t}{T} - \alpha \right) dt =& \int^{\frac{T}{2}}_0 \sin u \frac{T}{2 \pi} du
\\
\\
\int^{\frac{T}{2}}_0 \sin \left( \frac{2 \pi t}{T} - \alpha \right) dt =& \frac{T}{2 \pi} \int^{\frac{T}{2}}_0 \sin u du
\\
\\
\int^{\frac{T}{2}}_0 \sin \left( \frac{2 \pi t}{T} - \alpha \right) dt =& \frac{T}{2 \pi} \left. - \cos u \right|^{\frac{T}{2}}_0
\\
\\
\int^{\frac{T}{2}}_0 \sin \left( \frac{2 \pi t}{T} - \alpha \right) dt =& \frac{T}{2 \pi} \left[ - \cos (\pi - \alpha) + \cos (-\alpha) \right]
\qquad \text{ Apply sum and difference formula $\cos (a - b) = \cos a \cos b - \sin a \sin b$}
\\
\\
\int^{\frac{T}{2}}_0 \sin \left( \frac{2 \pi t}{T} - \alpha \right) dt =& \frac{T}{2 \pi} [\sin (\pi) \sin(- \alpha) - \cos(\pi) \cos (- \alpha) + \cos (- \alpha)]
\\
\\
\int^{\frac{T}{2}}_0 \sin \left( \frac{2 \pi t}{T} - \alpha \right) dt =& [(0) \sin(- \alpha) - (-1) \cos (- \alpha) + \cos ( - \alpha)]
\\
\\
\int^{\frac{T}{2}}_0 \sin \left( \frac{2 \pi t}{T} - \alpha \right) dt =& \frac{T}{2 \pi} [\cos (- \alpha) + \cos (- \alpha)]
\\
\\
\int^{\frac{T}{2}}_0 \sin \left( \frac{2 \pi t}{T} - \alpha \right) dt =& \frac{T}{\cancel {2} \pi} \cancel{2} \cos (- \alpha)
\\
\\
\int^{\frac{T}{2}}_0 \sin \left( \frac{2 \pi t}{T} - \alpha \right) dt =& \frac{T \cos (- \alpha)}{\pi}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...