Friday, October 17, 2014

Precalculus, Chapter 5, 5.5, Section 5.5, Problem 7

sin(2x)-sin(x)=0 , 0<=x<=2pi
using the identity sin(2x)=2sin(x)cos(x)
sin(2x)-sin(x)=0
=2sin(x)cos(x)-sin(x)=0
=(sin(x))(2cos(x)-1)=0
solving each part separately,
sin(x)=0 or 2cos(x)-1=0
General solutions for sin(x)=0 are,
x=0+2(pi)n, x=pi+2(pi)n
solutions for the range 0<=x<=2pi are,
x=0 , x=pi , x=2pi
Now solving 2cos(x)-1=0,
2cos(x)=1
cos(x)=1/2
General solutions for cos(x)=1/2 are,
x=(pi)/3+2pin , x=(5pi)/3+2pin
solutions for the range 0<=x<=2pi are,
x=pi/3 , x=(5pi)/3
Hence all the solutions are,
x=0,pi,2pi,pi/3 , (5pi)/3

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...