Monday, October 27, 2014

Calculus: Early Transcendentals, Chapter 5, 5.5, Section 5.5, Problem 73

You need to solve the definite integral, using fundamental theorem of calculus, such that:
int_a^b f(x) dx = F(b) - F(a)
First, you need to solve the indefinite integral int (dx)/((1+sqrt x)^4) , using the substitution 1 + sqrt x = t such that:
1 + sqrt x = t => 1/(2sqrt x) dx = dt => dx = 2(t-1)dt
int (dx)/((1+sqrt x)^4) = int (2(t-1)dt)/(t^4)
int (2(t-1)dt)/(t^4) = int (2t)/(t^4)dt - int 2/(t^4) dt
int (2(t-1)dt)/(t^4) = int 2/(t^3)dt - int 2/(t^4) dt
int (2(t-1)dt)/(t^4) = int 2*(t^(-3))dt - int 2*(t^(-4)) dt
int (2(t-1)dt)/(t^4) = 2*(t^(-2))/(-2) - 2(t^(-3))/(-3) + c
int (2(t-1)dt)/(t^4) = -1/(t^2) + 2/(3t^3) + c
Replacing back 1 + sqrt x for t yields:
int (dx)/((1+sqrt x)^4) = -1/((1 + sqrt x)^2) + 2/(3(1 + sqrt x)^3) + c
Calculating the integral yields:
int_0^1 (dx)/((1+sqrt x)^4) = (-1/((1 + sqrt x)^2) + 2/(3(1 + sqrt x)^3))|_0^1
int_0^1 (dx)/((1+sqrt x)^4) = (-1/((1 + 1)^2) + 2/(3(1 + 1)^3) + 1/((1 + 0)^2) - 2/(3(1 + 0)^3))
int_0^1 (dx)/((1+sqrt x)^4) = -1/4 + 1/12 + 1 - 2/3
int_0^1 (dx)/((1+sqrt x)^4) = (-3 + 1 + 12 - 8)/12
int_0^1 (dx)/((1+sqrt x)^4) = 2/12
int_0^1 (dx)/((1+sqrt x)^4) = 1/6
Hence, evaluating the definite integral, using the fundamental theorem of calculus, yields int_0^1 (dx)/((1+sqrt x)^4) = 1/6.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...