Saturday, May 3, 2014

Single Variable Calculus, Chapter 4, 4.7, Section 4.7, Problem 14

Suppose that a rectangular storage container with an open top is to have a volume of $10m^3$. The length of its base is twice the width. material for the base costs \$10 per square meter, and \$6 per square meter for the sides. Find the cost of material for the cheapest such container.



Let $x,y$ and $z$ be the dimensions of the box.
Volume = $xyz = 10$
Recall that the Surface Area is equal to the sum of the area faces of the box.
Surface Area = $xy + xy + xz + yz + yz$
Surface Area = $2xy + 2yz + xz$

If we want to minimize the over all, we multiply the price per square meter of each faces of the box...
cost = $10(xz)+6(2xy+2yz)$ = minimum
It is stated in the problem that $z = 2x$
Substitute this value to the equation of volume to obtain...

$
\begin{equation}
\begin{aligned}
xyz &= 10\\
xy(2x) &= 10\\
2x^2y &= 10 ; \quad y = \frac{5}{x^2}
\end{aligned}
\end{equation}
$


Again, if we substitute $z =2x$ and $\displaystyle y = \frac{5}{x^2}$ to the cost function, we get...

$
\begin{equation}
\begin{aligned}
\text{cost } = 10 (x(2x)) + 6 \left( 2x \left( \frac{5}{x^2} \right) \right) + 2 \left( 2 \left( \frac{5}{x^2} \right)(2x) \right)
\end{aligned}
\end{equation}
$

If we trace the derivative of the cost function and equate it to zero,

$
\begin{equation}
\begin{aligned}
0 &= 40x - \frac{180}{x^2}\\
\\
\frac{180}{x^2} &= 40x \\
\\
x^3 &= \frac{180}{x^2}\\
\\
x &= \sqrt[3]{\frac{180}{40}}m, \text{ then}
\end{aligned}
\end{equation}
$


So if $\displaystyle x = \sqrt[3]{\frac{180}{40}}$
$\displaystyle z = 2x = 2 \left( \sqrt[3]{\frac{180}{40}} \right) = 2 \sqrt[3]{\frac{180}{40}}m \quad $ and $ \quad \displaystyle y = \frac{5}{x^2} = \frac{5}{\left( \sqrt[3]{\frac{180}{40}} \right)^2} = \frac{5}{\left( \frac{180}{40} \right)^{\frac{2}{3}}} m$
Therefore, the cheapest cost for the material would be...

$
\begin{equation}
\begin{aligned}
\text{cost } &= 10
\left[

\left( \sqrt[3]{\frac{180}{40}} \right)


\left( 2\sqrt[3]{\frac{180}{40}} \right)

\right]
\left[
2 \left( \sqrt[3]{\frac{180}{40}} \right)

\left( \frac{5}{\left(\frac{180}{40}\right)^{2/3}} \right)

+2 \left( \frac{5}{\left(\frac{180}{40}\right)^{2/3}} \right)

\left( 2 \left( \sqrt[3]{\frac{180}{40}} \right) \right)

\right]
\\
\\
\text{cost } &= \$163.54
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...