Friday, May 9, 2014

Single Variable Calculus, Chapter 2, 2.2, Section 2.2, Problem 17

Evaluate the function $\displaystyle \lim \limits_{x \to 2} \frac{x^2 - 2x}{x^2 - x - 2}$ at the given numbers
$x = 2.5, 2.1, 2.05, 2.01, 2.005, 2.004, 1.9, 1.95, 1.99, 1.995, 1.999$ and guess the value of the limit, if it exists.



Substituting all the given values of $x$


$
\begin{equation}
\begin{aligned}

\begin{array}{|c|c|}
\hline\\
x & f(x) \\
\hline\\
2.5 & 0.71428 \\
2.1 & 0.67741 \\
2.05 & 0.67213 \\
2.01 & 0.66777 \\
2.005 & 0.66722 \\
2.001 & 0.66677 \\
1.9 & 0.65517 \\
1.95 & 0.66101\\
1.99 & 0.66555\\
1.995 & 0.66611\\
1.999 & 0.66655\\
\hline
\end{array}


\end{aligned}
\end{equation}
$



The values of the given function approaches $0.66$ from both direction, so the value of the function $\displaystyle \lim \limits_{x \to 2}\frac{x^2 -2x}{x^2 - x - 2} = \frac{2}{3}$

$\displaystyle \lim \limits_{x \to 2} \frac{x^2 - 2x}{x^2 - x - 2} = \frac{(2.000001)^2 - (2.000001)}{(2.000001)^2 - 2.000001 - 2} = \frac{2}{3}$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...