Thursday, May 8, 2014

College Algebra, Chapter 1, 1.3, Section 1.3, Problem 52

Find all real solutions of $\displaystyle 5x^2 - 7x + 5 = 0$.


$
\begin{equation}
\begin{aligned}

5x^2 - 7x + 5 =& 0
&& \text{Given}
\\
\\
5x^2 - 7x =& -5
&& \text{Subtract 5}
\\
\\
x^2 - \frac{7x}{5} =& -1
&& \text{Divide both sides by 5 to make the coefficient of $x^2$ equal to 1}
\\
\\
x^2 - \frac{7x}{5} + \frac{49}{100} =& -1 + \frac{49}{100}
&& \text{Complete the square: add } \left( \frac{\displaystyle \frac{-7}{5}}{2} \right)^2 = \frac{49}{100}
\\
\\
\left(x - \frac{7}{10} \right)^2 =& \frac{-51}{100}
&& \text{Perfect square}
\\
\\
x - \frac{7}{10} =& \pm \sqrt{\frac{-51}{100}}
&& \text{Take the square root}

\end{aligned}
\end{equation}
$


No real solution the discriminant $b^2 - 4ac < 0$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...