Monday, December 10, 2012

Single Variable Calculus, Chapter 3, 3.8, Section 3.8, Problem 2

a.) Express $\displaystyle \frac{dA}{dt}$ in terms of $\displaystyle \frac{dr}{dt}$
b.) At what rate is the area of the spill increasing when the radius is 30m?

a.) Given: $A$, area of the circle

$\qquad r$, radius

Required: $\displaystyle \frac{dA}{dt}$ in terms of $\displaystyle \frac{dr}{dt}$

Solution: Let $A = \pi r^2$ be the area of circle where $r$ = radius

$\displaystyle \frac{dA}{dt} = \frac{dA}{dr} \left( \frac{dr}{dt} \right) = 2 \pi r \left( \frac{dr}{dt} \right)$

$\fbox{$\large \frac{dA}{dt} = 2 \pi r \left( \frac{dr}{dt} \right)$}$

b.) Given: $\displaystyle \frac{dr}{dt} = 1 m/s$

Required: $\displaystyle \frac{dA}{dt} = ?$ when $r = 30 m$

Solution: $\displaystyle \frac{dA}{dt} = 2 \pi (3)(1)$

$\fbox{$\large \frac{dA}{dt} = 60 \pi m^2/s$}$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...