Monday, December 24, 2012

Calculus: Early Transcendentals, Chapter 5, 5.2, Section 5.2, Problem 10

You need to use the midpoint rule to approximate the interval. First, you need to find Delta x, such that:
Delta x = (b-a)/n
The problem provides b=pi/2 , a=0 and n = 4, such that:
Delta x = (pi/2-0)/4 = pi/8
Hence, the following 4 intervals of length pi/8 are: [0,pi/8], [pi/8,pi/4], [pi/4,(3pi)/8], [(3pi)/8,pi/2].
Now, you may evaluate the integral such that:
int_0^pi/2 cos^4 x dx = Delta x(f((0+pi/8)/2) + f((pi/8+pi/4)/2) + f((pi/4+(3pi)/8)/2) + f(((3pi)/8+pi/2)/2))
int_0^pi/2 cos^4 x dx = pi/8(f(pi/16) + f(3pi/16) + f(5pi/16) + f(7pi/16))
int_0^pi/2 cos^4 x dx = pi/8(cos^4(pi/16) + cos^4 (3pi/16)+ cos^4(5pi/16) + cos^4(7pi/16)))
cos(pi/8) = cos((pi/4)/2) => cos^2((pi/4)/2) = (1 + cos(pi/4))/2 => cos^4((pi/4)/2) = ((1 + cos(pi/4))^2)/4
cos^4((pi/4)/2) = ((1 + sqrt2/2)^2)/4
cos^4((pi/4)/2) = ((2 + sqrt2)^2)/16
cos(pi/16) = cos((pi/8)/2) => cos^2((pi/8)/2) = (1 + sqrt((1 + sqrt2/2)/2))/2
cos^4(pi/16) =(0.9619)^2 = 0.6637
cos(3pi/16) = -cos(pi/16) => cos^4(3pi/16) = cos^4(pi/16) = 0.6637
cos(5pi/16) = -cos(pi/16) => cos^4(3pi/16) = cos^4(pi/16) = 0.6637
cos(7pi/16) = -cos(3pi/16) = -(-cos(pi/16) ) => cos^4(7pi/16) = cos^4(pi/16) = 0.6637
int_0^pi/2 cos^4 x dx = pi/8( 0.6637 + 0.6637 + 0.6637 + 0.6637)
int_0^pi/2 cos^4 x dx = 4*pi/8(0.6637)
int_0^pi/2 cos^4 x dx = pi/2*(0.6637)
int_0^pi/2 cos^4 x dx = 0.3318*pi
Hence, approximating the definite integral, using the midpoint rule, yields int_0^pi/2 cos^4 x dx = 0.3318*pi.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...