Saturday, December 22, 2012

Calculus: Early Transcendentals, Chapter 7, 7.1, Section 7.1, Problem 21

int(xe^(2x))/(1+2x)^2dx
If f(x) and g(x) are differentiable functions, then
intf(x)g'(x)=f(x)g(x)-intf'(x)g(x)dx
If we rewrite f(x)=u and g'(x)=v, then
intuvdx=uintvdx-int(u'intvdx)dx
Using the above method of integration by parts,
Let u=xe^(2x)
u'=xd/dx(e^(2x))+e^(2x)d/dx(x)
u'=x(2e^(2x))+e^(2x)
u'=e^(2x)(2x+1)
v=1/(1+2x)^2
intvdx=int(1/(1+2x)^2)dx
Let's integrate by the use of substitution method,
Let t=1+2x
dt=2dx
int(1/(1+2x)^2)dx=intdt/(2t^2)
=1/2(t^(-2+1)/(-2+1))
=-1/(2t)
substitute back t=1+2x,
=-1/(2(1+2x))
int(xe^(2x))/(1+2x)^2dx=xe^(2x)int(1/(1+2x)^2)dx-int(d/dx(xe^(2x))int(1/(1+2x)^2)dx)dx)
=xe^(2x)(-1/(2(1+2x)))-inte^(2x)(1+2x)(-1/(2(1+2x)))dx
=(-xe^(2x))/(2(1+2x))+inte^(2x)/2dx
=(-xe^(2x))/(2(1+2x))+(1/2)e^(2x)/2
=e^(2x)/4-(xe^(2x))/(2(1+2x))
Add a constant C to the solution,
int(xe^(2x))/(1+2x)^2dx=e^(2x)/4-(xe^(2x))/(2(1+2x))+C

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...