Monday, December 24, 2012

College Algebra, Chapter 2, 2.2, Section 2.2, Problem 60

Find an equation of the circle with endpoints of a diameter at $P(-1,3)$ and $Q(7, -5)$.

Recall that the diameter is twice the radius so by getting the distance between the points using distance formula,


$
\begin{equation}
\begin{aligned}

d_{PQ} =& \sqrt{(-5 -3)^2 + (7 - (-1))^2}
\\
\\
d_{PQ} =& \sqrt{(-8)^2 + (8)^2}
\\
\\
d_{PQ} =& \sqrt{64 + 64}
\\
\\
d_{PQ} =& 8 \sqrt{2} \text{ units}

\end{aligned}
\end{equation}
$


Therefore, the radius is..

$\displaystyle r = \frac{d_{PQ}}{2} = \frac{8 \sqrt{2}}{2} = 4 \sqrt{2} $ units

Also, recall that the general equation for the circle with circle $(h,k)$ and
radius $r$ is..


$
\begin{equation}
\begin{aligned}

(x - h)^2 + (y - k)^2 =& r^2
&& \text{Model}
\\
\\
(x - h)^2 + (y - k)^2 =& (4 \sqrt{2})^2
&& \text{Substitute the given}
\\
\\
(x - h)^2 + (y - k)^2 =& 32
&&

\end{aligned}
\end{equation}
$


To get the center $(h,k)$, we get the midpoint of the endpoints of the diameter $PQ$

$\displaystyle h = \frac{-1 + 7}{2} = 3 \text{ and } k = \frac{3 - 5}{2} = -1$

Thus, the equation of the circles..


$
\begin{equation}
\begin{aligned}

(x - 3)^2 + (y - (-1))^2 =& 32
\\
\\
(x - 3)^2 + (y + 1)^2 =& 32


\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...