Saturday, December 7, 2019

Single Variable Calculus, Chapter 4, 4.3, Section 4.3, Problem 60

Show that $\displaystyle 2 \sqrt{x} > 3 - \frac{1}{x}$ for all $x > 1$.

If $\displaystyle 2\sqrt{x} > 3 - \frac{1}{x}$ for all $x > 1$, then $f(x)$ must be increasing on $(1 , \infty)$
So,
$\displaystyle f(x) = 2\sqrt{x} - 3 + \frac{1}{x}$
By taking the derivative

$
\begin{equation}
\begin{aligned}
f'(x) &= 2 \left( \frac{1}{2\sqrt{x}} \right) - \frac{1}{x^2}\\
\\
f'(x) &= \frac{1}{\sqrt{x}} - \frac{1}{x^2}
\end{aligned}
\end{equation}
$


We can say that $f(x)$ is increasing when, $f'(x) > 0$, $\displaystyle \frac{1}{\sqrt{x}} > \frac{1}{x^2}$
We have $\displaystyle \frac{x^2}{\sqrt{x}} > 1$ which implies for all $x > 1$
Therefore, $\displaystyle 2 \sqrt{x} > 3 - \frac{1}{3}$ for all $x > 1$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...