Saturday, December 7, 2019

Single Variable Calculus, Chapter 3, 3.3, Section 3.3, Problem 55

Find the equation of the tangent line and normal line of the curve y=3x+1x2+1 at the point (1,2)


Required:

Equation of the tangent line and the normal line at P(1,2)

Solution:


y=mT=Slope of the tangent linemN=Slope of the normal liney=mT=(x2+1)ddx(3x+1)[(3x+1)ddx(x2+1)](x2+1)2y=mT=(x2+1)(3)(3x+1)(2x)(x2+1)2y=mT=3x2+36x22x(x2+1)2=3x22x+3(x2+1)2mT=3x22x+3(x2+1)2Substitute the value of x which is 1mT=3(1)22(1)+3[(1)2+1]2Simplify the equationmT=24Reduce it to lowest termmT=12



Solving for the equation of the tangent line:


yy1=mT(xx1)Substitute the value of the slope (mT) and the given pointy2=12(x1)Multiply 12 the equationy2=x+12Add 2 to each sidesy=x+12+2Simplify the equationy=x+1+42Combine like termsy=x+52Equation of the tangent line to the curve at P(1,2)


Solving for the equation of the normal line:


mN=1mTmN=112mN=2yy1=mN(xx1)Substitute the value of slope (mN) and the given pointy2=2(x1)Multiply 2 to the equationy2=2x2Add 2 to each sidesy=2x2+2Combine like termsy=2xEquation of the normal line at P(1,2)

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...