Monday, December 2, 2019

Calculus: Early Transcendentals, Chapter 4, 4.9, Section 4.9, Problem 63

a(t)=10sin(t)+3cos(t)
a(t)=v'(t)
v(t)=inta(t)dt
v(t)=int(10sin(t)+3cos(t))dt
v(t)=-10cos(t)+3sin(t)+c_1
v(t)=s'(t)
s(t)=intv(t)dt
s(t)=int(-10cos(t)+3sin(t)+c_1)dt
s(t)=-10sin(t)+3(-cos(t))+c_1t+c_2
s(t)=-10sin(t)-3cos(t)+c_1t+c_2
Let's find constants c_1 and c_2 , given s(0)=0 ans s(2pi)=12
s(0)=0=-10sin(0)-3cos(0)+c_1(0)+c_2
0=-3+c_2
c_2=3
s(2pi)=12=-10sin(2pi)-3cos(2pi)+c_1(2pi)+3
12=-10(0)-3(1)+2pic_1+3
12=2pic_1
c_1=6/pi
:. position of the particle is given by s(t)=-10sin(t)-3cos(t)+(6t)/pi+3

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...