Monday, November 4, 2019

Single Variable Calculus, Chapter 7, 7.8, Section 7.8, Problem 96

Evaluate $\displaystyle \lim_{x \to 0} \frac{1}{x^3}\int^x_0 \sin (t^2) dt$
$\displaystyle \lim_{x \to 0} \frac{1}{x^3}\int^x_0 \sin (t^2) dt = \lim_{x \to 0} \frac{\int^x_0 \sin (t^2) dt}{x^3}$


By applying L'Hospital's Rule
$\displaystyle \lim_{x \to 0} \frac{\int^x_0 \sin (t^2) dt}{x^3} = \lim_{x \to 0} \frac{\frac{d}{dx} \left(\int^x_0 \sin(t^2) dt \right) }{\frac{d}{dx} (x^3)} = \lim_{x \to 0} \frac{\sin x^2}{3x^2}$

If we evaluate the limit, we will still get a indeterminate form, so we must apply the L'Hospital's Rule until the limit can be determined so...

$
\begin{equation}
\begin{aligned}
\lim_{x \to 0} \frac{\sin x^2}{3x^2} = \lim_{x \to 0} \frac{2x\cos x^2}{6x} &= \lim_{x \to 0} \frac{2\cos x^2}{6}\\
\\
&= \frac{2\cos(0)^2}{6}\\
\\
&= \frac{2(1)}{6}\\
\\
&= \frac{1}{3}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...