Sunday, November 24, 2019

Single Variable Calculus, Chapter 3, 3.3, Section 3.3, Problem 52

a.) $\displaystyle y = \frac{x}{(1 + x^2)}$ is a curve called Serpentine. Find the equation of the tangent line to this curve at $P ( 3, 0.3)$

Required:

Equation of the tangent line to the curve at $P(3,0.3)$

Solution:

Let $y' = m$ (slope)


$
\begin{equation}
\begin{aligned}

\qquad y' = m =& \frac{\displaystyle (1 + x^2) \frac{d}{dx} (x) - \left[ (x) \frac{d}{dx} (1 + x^2) \right]}{(1 + x^2)^2}
&&
\\
\\
\qquad y' = m =& \frac{(1 + x^2) (1) - (x)(2x)}{(1 + x^2)^2}
&&
\\
\\
\qquad y' = m =& \frac{1 + x^2 - 2x^2}{(1 + x^2)^2}
&&
\\
\\
\qquad m =& \frac{1 - x^2}{(1 + x^2)^2}
&& \text{Substitute the value of $x$ which is $3$}
\\
\\
\qquad m =& \frac{1 - (3)^2}{[ 1 + (3)^2]^2}
&& \text{Simplify the equation}
\\
\\
\qquad m =& \frac{-8}{100}
&& \text{Reduce to lowest term}
\\
\\
\qquad m =& \frac{-2}{25}
&&


\end{aligned}
\end{equation}
$


Solving for the equation of the tangent line:


$
\begin{equation}
\begin{aligned}

\qquad y - y_1 =& m(x - x_1)
&& \text{Substitute the value of the slope $(m)$ and the given point}
\\
\\
\qquad y - 0.3 =& \frac{-2}{25} (x - 3)
&& \text{Multiply $\large \frac{-2}{25}$ the equation}
\\
\\
\qquad y - 0.3 =& \frac{-2x + 6}{25}
&& \text{Add $0.3$ to each sides}
\\
\\
\qquad y =& \frac{-2x + 6}{25} + 0.3
&& \text{Get the LCD}
\\
\\
\qquad y =& \frac{-2x + 6 + 7.5}{25}
&& \text{Combine like terms}
\\
\\
\qquad y =& \frac{-2x + 13.5}{25} \text{ or } -0.08x + 0.54
&& \text{Equation of the tangent line to the curve at $P (3, 0.3)$}


\end{aligned}
\end{equation}
$


b.) Graph the curve and the tangent line on part (a).

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...