Monday, November 11, 2019

Calculus of a Single Variable, Chapter 9, 9.3, Section 9.3, Problem 6

Integral test is applicable if f is positive and decreasing function on interval [k,oo) where a_n = f(x).
If int_k^oo f(x) dx is convergent then the series sum_(n=k)^oo a_n is also convergent.
If int_k^oo f(x) dx is divergent then the series sum_(n=k)^oo a_n is also divergent.
For the series sum_(n=1)^oo n*e^(-n/2) , we have a_n =n*e^(-n/2) then we may let the function:
f(x) =x*e^(-x/2) .
The graph of f(x) is:

As shown on the graph, f(x) is positive on the interval [1,oo) . Based on the behavior of the graph as x increases, the function eventually decreases. We can confirm this by applying First Derivative test. To determine the derivative of the function, we may apply the Product rule for differentiation: d/(dx) (u*v)= v* du+ u *dv .
Let: u =x then du = 1
v=e^(-x/2) then dv =- e^(-x/2)/2
Note: d/(dx)e^(-x/2) = e^(-x/2) * d/(dx) (-x/2)
=e^(-x/2) *(-1/2)
=- e^(-x/2)/2
Applying the Product rule for differentiation, we get:
f'(x) =e^(-x/2) * 1 + x *- e^(-x/2)/2
=e^(-x/2) - (xe^(-x/2))/2
= (e^(-x/2) (2-x))/2
Solve for critical values of x by applying f'(x) =0 .
(e^(-x/2) (2-x))/2 =0
(e^(-x/2) (2-x))=0
Apply zero-factor property:
(2-x)=0 then x=2
Using test point x=5 after x=2 , we get:
f'(5) = (e^(-5/2) (2-5))/2 ~~ -0.12313 .
When f'(x) lt0 , then the function is decreasing for the given integral.
Then f(x)=x*e^(-x/2) from the interval [2, oo) . Since the function is ultimately decreasing on the interval [1,oo) we may apply the integral test:
int_1^oo x*e^(-x/2) dx= lim_(n-gtoo) int_1^tx*e^(-x/2)dx
To determine the indefinite integral of int_1^t x*e^(-x/2)dx , we may apply u-substitution by letting: u =-x/2 or x=-2u then du = -1/2 dx or -2du =dx .
The integral becomes:
int x*e^(-x/2)dx=int (-2u)*e^u*(-2du)
= int 4ue^u du
= 4 int ue^udu
Apply the integration formula for exponential functions: int xe^xdx=(x-1)e^x+C.
4 int ue^udu=4 *(u-1)e^u
= 4ue^u -4e^u
Plug-in u =-x/2 on 4ue^u -4e^u , we get:
int_1^t x*e^(-x/2)dx =4(-x/2)e^(-x/2) -4e^(-x/2)|_1^t
=-2xe^(-x/2) -4e^(-x/2)|_1^t
Applying definite integral formula: F(x)|_a^b = F(b)-F(a).
-2e^(-x/2) -4e^(-x/2)|_1^t=[-2te^(-t/2) -4e^(-t/2)]-[-2*1e^(-1/2) -4e^(-1/2)]
=-2te^(-t/2) -4e^(-t/2)+2e^(-1/2) +4e^(-1/2)
=-2te^(-t/2) -4e^(-t/2)+6e^(-1/2)
Applying int_1^t x*e^(-x/2)dx =-2te^(-t/2) -4e^(-t/2)+6e^(-1/2) , we get:
lim_(n-gtoo) int_1^tx*e^(-x/2)dx =lim_(n-gtoo)[-2te^(-t/2) -4e^(-t/2)+6e^(-1/2)]
=lim_(n-gtoo)-2te^(-t/2) -lim_(n-gtoo)4e^(-t/2)+lim_(n-gtoo)6e^(-1/2)
=-2*ooe^(-oo) -4e^(-oo)+6e^(-1/2)
=0-0+6/e^(1/2)
=6/e^(1/2) or 6/sqrt(e)
The lim_(n-gtoo) int_1^tx*e^(-x/2)dx =6/sqrt(e) implies that the integral converges.
Conclusion:
The integral int_1^oo x*e^(-x/2)dx is convergent therefore the series sum_(n=1)^oo n*e^(-n/2) must also be convergent.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...