Monday, November 11, 2019

Single Variable Calculus, Chapter 2, Review Exercises, Section Review Exercises, Problem 13

Determine $\displaystyle \lim \limits_{s \to 16} \frac{4 - \sqrt{s}}{s - 16}$



$
\begin{equation}
\begin{aligned}

\lim \limits_{s \to 16} \frac{4 - \sqrt{s}}{s - 16} \cdot \frac{4 + \sqrt{s}}{4 + \sqrt{s}}
&= \lim \limits_{s \to 16} \frac{16 - s}{(s - 16)(4 + \sqrt{s})}
&& \text{Multiply both numerator and denominator by $(\sqrt{4} + \sqrt{s})$}\\
\\
&= \lim \limits_{s \to 16} \frac{-1\cancel{(s - 16)}}{\cancel{(s - 16)}(4 + \sqrt{s})}
&& \text{Factor numerator and cancel out like terms}\\
\\
&= \frac{-1}{4 + \sqrt{16}} = \frac{-1}{4 + 4}
&& \text{Substitute value of $s$ and simplify}\\
\\
& \fbox{$= \displaystyle \frac{-1}{8}$}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...