Tuesday, November 26, 2019

Single Variable Calculus, Chapter 7, 7.8, Section 7.8, Problem 16

Determine the $\displaystyle \lim_{x \to \infty} \frac{x + x^2}{1 - 2x^2}$. Use L'Hospital's Rule where appropriate. Use some Elementary method if posible. If L'Hospitals Rule doesn't apply. Explain why.

$\displaystyle \lim_{x \to \infty} \frac{x + x^2}{1 - 2x^2} = \frac{\infty + \infty^2}{1-2(\infty)^2} = - \frac{\infty}{\infty} \text{ Indeterminate}$

Thus, by Applying L'Hospital's Rule,
$\displaystyle \lim_{x \to \infty} \frac{x+x^2}{1-2x^2} = \lim_{x \to \infty} \frac{1+2x}{1-4x}$
We will still get an indeterminate form if we evaluate the limit we obtained. Again,
By applying L'Hospital's Rule.

$
\begin{equation}
\begin{aligned}
\lim_{x \to \infty} \frac{1+2x}{1-4x} &= \lim_{x \to \infty} \frac{2}{-4}\\
\\
&= \frac{2}{-4}\\
\\
&= -\frac{1}{2}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...