Monday, November 4, 2019

Calculus and Its Applications, Chapter 1, 1.6, Section 1.6, Problem 34

Differentiate $f(x) = 6x^{-4} (6x^3 + 10x^2 -8x + 3)$

$
\begin{equation}
\begin{aligned}
f(x) &= \left( 6x^{-4} \right) \left( 6x^3 \right) + \left( 6x^{-4} \right) (10x^2) - \left( 6x^{-4} \right) (8x) + 3 \left( 6x^{-4} \right)
&& \text{Apply Distributive property}\\
\\
f(x) &= 36x^{-4 + 3} + 60x^{-4 + 2} - 48x^{-4 +1} + 18x^{-4}
&& \text{Multiply variables with same bases by adding their exponents}\\
\\
f(x) &= 36x^{-1} + 60x^{-2} - 48x^{-3} + 18 x^{-4}
\end{aligned}
\end{equation}
$

Then by taking the derivative, we get

$
\begin{equation}
\begin{aligned}
f'(x) &= 36 \cdot \frac{d}{dx} (x^{-1}) + 60 \cdot \frac{d}{dx} (x^{-2}) - 48 \cdot \frac{d}{dx} (x^{-3}) + 18 \cdot \frac{d}{dx} (x^{-4})\\
\\
f'(x) &= 36 \cdot (-1) x^{-1 -1} + 60 \cdot (-2) x^{-2-1} -48 \cdot (-3) x^{-3 - 1}+ 18 \cdot (-4) x^{-4 -1 }\\
\\
f'(x) &= -36x^{-2} - 120x^{-3} + 144 x^{-4} - 72 x^{-5}\\
\\
f'(x) &= \frac{-36}{x^2} - \frac{120}{x^3} + \frac{144}{x^4} - \frac{72}{x^5}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...