Saturday, March 9, 2019

Single Variable Calculus, Chapter 1, 1.1, Section 1.1, Problem 21

The function $f(x) = 3x^2 - x +2$ is given. Evaluate the following:



$f(2),f(-2),f(a),f(-a),f(a+1),2f(a),f(2a),f(a^3),[f(a)]^2$, and $f(a+h)$




$
\begin{equation}
\begin{aligned}
@ f(2) &\\
f(2) =& 3(2)^2 - (2) + 2 &&(\text{Substitute 2 to the function f})
\end{aligned}
\end{equation}
$




$\fbox{$f(2) = 12$}$



$
\begin{equation}
\begin{aligned}

@ f(-2) &\\
f(-2) =& 3(-2)^2 - (-2) + 2 &&(\text{ Substitute -2 to the function f})
\end{aligned}
\end{equation}
$


$\fbox{$f(-2) = 16$}$



$
\begin{equation}
\begin{aligned}
@f(a)&\\
f(a) =& 3(a)^2 - (a)+2 &&(\text{ Substitute a to the function f})
\end{aligned}
\end{equation}
$



$\fbox{$f(a) = 3a^2 - a+2$}$


$
\begin{equation}
\begin{aligned}
@f(-a)&\\

f(-a) =& 3(-a)^2 - (-a) +2 &&(\text{ Substitute -a to the function f})
\end{aligned}
\end{equation}
$



$\fbox{$f(-a) = 3a^2 + a + 2$}$

$
\begin{equation}
\begin{aligned}


@f(a +1)&\\

f(a+1) = &3(a+1)^2 - (a+1)+2 && (\text{ Substitute (a + 1) to the function f})\\


f(a +1) =& 3(a^2+2a+1) - (a+1)+2 && (\text{ Simplify the equation})\\

f(a + 1) =& 3a^2 + 6a + 3- a - 1 + 2 && (\text{Combine like terms})

\end{aligned}
\end{equation}
$



$\fbox{$f(a + 1)= 3a^2 + 5a + 4$}$

$
\begin{equation}
\begin{aligned}


@2f(a)&\\

2f(a) =& 2[3(a)^2 - (a) + 2] &&(\text{ Substitute a to the function } f, \text{ then multiply the answer by 2})

\end{aligned}
\end{equation}
$



$\fbox{$2f(a) = 6a^2 - 2a+4$}$


$
\begin{equation}
\begin{aligned}

@f(2a)&\\

f(2a) =& 3(2a)^2 - (2a) + 2 &&(\text{ Substitute } 2a \text{ to the function} f)
\end{aligned}
\end{equation}
$



$\fbox{$f(2a) = 12a^2 - 2a +2$}$



$
\begin{equation}
\begin{aligned}

@f(a^2)&\\

f(a^2) =& 3(a^2)^2 - (a^2) + 2 && (\text{ Substitute } a^2 \text{ to the function f, then simplify})
\end{aligned}
\end{equation}
$



$\fbox{$f(a^2)= 3a^4 - a^2 + 2$}$





$
\begin{equation}
\begin{aligned}

@[f(a)]^2 &\\

[f(a)]^2 =& [3(a)^2 - (a) + 2]^2 &&(\text{ Substitute a to the function f, then square the answer})\\



[f(a)]^2 =& (3a^2 - a + 2)^2 &&(\text{ Expand the equation})\\



[f(a)]^2 =& 9a^4 - 3a^3 + 6a^2 - 3a^3 + a^2 - 2a + 6a^2 - 2a +4 &&(\text{ Combine like terms})
\end{aligned}
\end{equation}
$



$\fbox{$[f(a)]^2 = 9a^4 - 6a^3 +13a^2 -4a+4$}$



$
\begin{equation}
\begin{aligned}

@f(a + h) &\\

f(a+h) =& 3(a+h)^2 - (a+h)+2 && (\text{ Substitute } f( a + h) \text{ to the function} f)\\



f(a + h)=& 3(a^2 + 2ah +h^2) - a - h +2
\end{aligned}
\end{equation}
$



$\fbox{$f(a + h) = 3a^2 + 6ah +3h^2-a-h+2$}$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...