Tuesday, March 26, 2019

Single Variable Calculus, Chapter 8, 8.1, Section 8.1, Problem 34

Evaluate $\displaystyle \int t^3 e^{-t^2} dt$ by making a substitution first, then by using Integration by parts.
If we use $ z = -t^2$, $t^2 = -z$, then $dz = -2t dt$

so,

$
\begin{equation}
\begin{aligned}
\int t^3 e^{-t^2} dt = \int t^2 \cdot t e^{-t^2} dt &= \int - z \cdot e^z \cdot \left( \frac{dz}{-z} \right)\\
\\
&= \int \frac{1}{2} ze^z dz\\
\\
&= \frac{1}{2} \int z e^z dz
\end{aligned}
\end{equation}
$


By using integration by parts, if we let $u =z $ and $dv = e^z dz$, then
$du = dz$ and $v = e^z$

$
\begin{equation}
\begin{aligned}
\frac{1}{2} \int ze^z dz = uv - v\int du &= \frac{1}{2} \left[ ze^z - \int e^z dz \right]\\
\\
&= \frac{1}{2} \left[ ze^z - e^z \right]\\
\\
&= \frac{e^z}{z} [z -1]
\end{aligned}
\end{equation}
$

but, $z = -t^2$
So, $\displaystyle \frac{e^z}{z} [z-1] = \frac{e^{-t^2}}{2} \left[ -t^2 -1 \right] + c$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...