Saturday, March 30, 2019

Single Variable Calculus, Chapter 7, 7.6, Section 7.6, Problem 72

Find the volume of the region under the curve $\displaystyle y = \frac{1}{\sqrt{x^2+4}}$ from $x = 0$ to $x = 2$ that is rotated about the $x$-axis.

By using vertical strips, notice that if you slice the curve, its cross section forms a circle with radius $\displaystyle \frac{1}{\sqrt{x^2+4}}$. Hence, its cross sectional area is as $\displaystyle A = \pi \left( \frac{1}{\sqrt{x^2 +4}} \right) = \frac{\pi}{x^2+4}$

Thus, the volume is...

$
\begin{equation}
\begin{aligned}
V &= \int^2_0 A(x) dx\\
\\
V &= \int^2_0 \frac{\pi}{x^2+4} dx\\
\\
V &= \pi \int^2_0 \frac{dx}{x^2 + 4}\\
\\
\text{We can rewrite it as } V &= \pi \int^2_0 \frac{\left( \frac{1}{4} \right)}{\frac{x^2}{4}+1} dx\\
\\
&= \pi \int^2_0 \frac{\left( \frac{1}{4} \right)}{\left(\frac{x}{2}\right)^2+1} dx
\end{aligned}
\end{equation}
$


If we let $\displaystyle u = \frac{x}{2}$, then
$\displaystyle du = \frac{dx}{2}$
Make sure that the upper and lower limits are also in terms of $u$ so...
$\displaystyle V = \pi \int^{\frac{2}{2}}_{\frac{0}{2}} \frac{2 du}{u^2 + 1} \left( \frac{1}{4} \right)$


Recall that $\displaystyle \frac{d}{dx}\left( \tan^{-1} x \right) = \frac{dx}{1 + x^2}$

$
\begin{equation}
\begin{aligned}
V &= \frac{\pi}{2} \int^1_0 \frac{du}{u^2 \pi}\\
\\
V &= \frac{\pi}{2} \left[ \tan^{-1} u \right]^1_0\\
\\
V &= \frac{\pi}{2} \left[ \tan^{-1} (1) - \tan^{-1} (0) \right] = \frac{\pi}{2} \left[ \frac{\pi}{4} -0 \right] = \frac{\pi^2}{8} \text{cubic units}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...