Thursday, March 14, 2019

Single Variable Calculus, Chapter 3, 3.3, Section 3.3, Problem 40

Differentiate $\displaystyle y = \frac{u^6 - 2u^3 + 5}{u^2} $



$
\begin{equation}
\begin{aligned}

y' =& \frac{u^2 \displaystyle \frac{d}{du} (u^6 - 2u^3 + 5) - \left[ (u^6 - 2u^3 + 5) \frac{d}{du} (u^2) \right]}{(u^2)^2}
&& \text{Apply Quotient Rule}
\\
\\
y' =& \frac{(u^2)(6u^5 - 6u^2) - [(u^6 - 2u^3 + 5)(2u)]}{u^4}
&& \text{Expand the equation}
\\
\\
y' =& \frac{6u^7 - 6u^4 - 2u^7 + 4u^4 - 10u}{u^4}
&& \text{Combine like terms}
\\
\\
y' =& \frac{4u^7 - 2u^4 - 10u}{u^4}
&& \text{Factor the numerator and denominator}
\\
\\
y' =& \frac{\cancel{u} (4u^6 - 2u^3 - 10)}{(u^3)\cancel{(u)}}
&& \text{Cancel out like terms}
\\
\\
y' =& \frac{4u^6 - 2u^3 - 10}{u^3}
&&

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...